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20 Water tube system

20.1 General information

This IVP is an index 2 system of 49 non-linear Di�erential-Algebraic Equations and describes the water
ow through a tube system, taking into account turbulence and the roughness of the tube walls. The
parallel-IVP-algorithm group of CWI contributed this problem to the test set in cooperation with
B. Koren (CWI) and Paragon Decision Technology B.V.

The software part of the problem is in the �le water.f available at [MM08].

20.2 Mathematical description of the problem

The problem is of the form

M
dy

dt
= f(t; y); y(0) = y0; y0(0) = y00; (II.20.1)

where 0 � t � 17 � 3600 and y 2 IR49. Furthermore,

M =

2
4 M� O O

O O O
O O Mp

3
5 ; (II.20.2)

where M� 2 IR18�18 and Mp 2 IR13�13 are given by

M�
i;j =

�
vi for i = j;
0 otherwise:

Mp
i;j =

8<
:

C5 for i = j = 1;
C8 for i = j = 2;
0 otherwise;

The �rst 38 components of y are of index 1, the last 11 are of index 2. For the de�nition of f and the
values of C5, C8 and v we refer to x20.3.

The initial vectors y0 and y
0
0 are given by

y0 =

8<
:

0 for i = 1; 2; : : : ; 18
0:047519404529185289807 for i = 19; 20; : : : ; 36
109800 for i = 37; 38; : : : ; 49

and y00 = (0; : : : ; 0)T: (II.20.3)

The function f contains several square roots. It is clear that the function can not be evaluated if
one of the arguments of one of these square roots becomes negative. To prevent this situation, we set
IERR=-1 in the Fortran subroutine that de�nes f if this happens. See page IV-ix of the the description
of the software part of the test set for more details on IERR.

20.3 Origin of the problem

This test example describes how water ows through a water tube system. The system is represented
by a set of nodes, which are connected by tubes. The structure of the water tube system is depicted
in Figure II.20.1. There are two types of nodes: normal nodes and bu�er nodes, to which a bu�er
is attached. We denote the set of all nodes by N , and the set of bu�er nodes by B. For the system
under consideration, B = f5; 8g. The rectangles in Figure II.20.1 represent the bu�ers. The pipes are
in the horizontal plane; the bu�ers are connected to the nodes perpendicular to this plane. The pipes
from the bu�er nodes to the rectangles are virtual; in reality the bu�ers are directly attached to the
bu�er nodes. In the model every node can have inow and outow, which are denoted by eini (t) and
eouti (t). In our example, inow occurs only at node 1 and node 13, whereas only node 10 has outow.

http://www.dm.uniba.it/~testset/src/problems/water.f
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Figure II.20.1: Structure of water tube system.

The unit of time in the model is second. De�ning the time in hours by t̂ = t=3600, these ows are
de�ned by

ein1 (t) = (1� cos(e�t̂ � 1))=200;

ein13(t) = (1� cos(e�t̂ � 1))=80;

eout10 (t) = t̂2(3t̂2 � 92t̂+ 720)=106:

Figure II.20.2 shows plots of these ows as function of t̂. Note that the outow has a peak at 8 AM
and is increasing again after 3 PM.

Although it seems that node 6 and node 9 could be omitted, we include them in the model, to
leave open the possibility that these nodes have inow or outow. The arrows in Figure II.20.1 denote
the direction in which we compute the ows. For example, if there is a ow from node 4 to node 3,
then this ow will be negative.

To model the ow of the water, we introduce some symbols, which are listed in Table II.20.1. The
roughness ki;j = 2 � 10�4 is measured as the average height of the obstacles on the tube wall. The
structure Si;j is de�ned as

Si;j =

�
1 if there is a tube from i to j;
0 otherwise:
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Figure II.20.2: Inows and outow in m3=s as function of time in hours.

From Figure II.20.1 we see that

S =

2
666666666666666666664

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0

3
777777777777777777775

:

Some of the quantities in Table II.20.1 can be computed directly from others:

� = � � �;

�i;j(t) = ui;j(t) �Ai;j ;

Ai;j = � � d2i;j=4;

mi;j = Ai;j � li;j � �;

Ri;j(t) = ui;j(t) � di;j=�:

The de�nition of Ri;j(t) was taken from [Sch78, p. 816].



II-20-4 DAE - Water tube system

Table II.20.1: List of symbols for modeling ow in tubes.

Symbol Unit Meaning

�i;j(t) m3=s ow through tube from i to j at time t
ui;j(t) m=s mean velocity of ow through tube from i to j at time t
Fi;j(t) N total force on water in tube from i to j at time t
F a
i;j(t) N adhesion force on water in tube from i to j at time t
�i;j(t) - coe�cient of resistance of tube from i to j at time t
Ri;j(t) - Reynolds number of ow through tube from i to j at time t
pi(t) N=m2 pressure in i at time t
Si;j - incidence matrix for structure of the tube system
mi;j kg mass of water in tube from i to j
di;j m diameter of tube from i to j
li;j m length of tube from i to j
Ai;j m2 area of tube from i to j
ki;j m roughness of wall of tube from i to j
eini (t) m3=s inow at i at time t
eouti (t) m3=s outow at i at time t
Bi (i 2 B) m2 area of bu�er i
Rcrit - critical Reynolds number
g m=s2 gravity constant
� kg=m3 density of water
� kg=(m � s) viscosity of water
� m2=s kinematic viscosity of water
v kg=m4 auxiliary vector, see (II.20.15)

We now explain how to model the ow through a tube, using Newton's second Law, which states
that

mi;j
dui;j(t)

dt
= Fi;j(t): (II.20.4)

Assuming that gravity has no inuence on the water ow in all tubes (remember that the pipes are
in the horizontal plane), we see from Figure II.20.3 that the total force on the water in a tube equals

Fi;j(t) = Ai;j(pi(t)� pj(t))� F a
i;j(t): (II.20.5)

The magnitude of the adhesion force depends on the type of ow. For laminar ows (jRi;j(t)j � Rcrit),
we use the formula [Sch78, p. 12]

F a
i;j(t)=Ai;j = 32� � li;j � ui;j(t)=d

2
i;j : (II.20.6)

For turbulent ows (jRi;j(t)j > Rcrit), we have [Sch78, p. 597]

F a
i;j(t)=Ai;j = �i;j(t) � � � li;j � ui;j(t)

2=di;j ; (II.20.7)

where the resistance �i;j(t) is computed from Colebrook and White's formula [Sch78, p. 621]:

0 =
1p
�i;j(t)

� 1:74 + 2 log

 
2ki;j
di;j

+
18:7

jRi;j(t)j
p
�i;j(t)

!
: (II.20.8)

Although for laminar ows the adhesion force does not depend on the resistance coe�cient (cf.
(II.20.6)), we have to choose a value for �i;j in case of laminar ows. We compute this value by
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Figure II.20.3: Forces on water in tube.

replacing Ri;j in (II.20.8) by Rcrit, i.e., we choose the value such that if a ow changes from laminar
into turbulent, the resistance coe�cient changes gradually.

For the normal nodes, Kircho�'s law holds, which states that

8n 2 N � B : 0 =
X

ijSi;n=1

�i;n(t) + einn (t)�
X

jjSn;j=1

�n;j(t)� eoutn (t) (II.20.9)

For the bu�er nodes, we add a term  n(t) that represents the ow to the bu�er:

8n 2 B :  n(t) =
X

ijSi;n=1

�i;n(t) + einn (t)�
X

jjSn;j=1

�n;j(t)� eoutn (t) (II.20.10)

Figure II.20.4: Representation of water bu�er.
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We now explain how to compute  n(t). A bu�er can be interpreted as the water column in
Figure II.20.4, with ground area Bn and height h. Due to the ow  n(t) the height of the bu�er
changes at a rate  n(t)=Bn. The di�erence between the pressure at the top and bottom of the column
satis�es

pn � p0 = g � � � h:

Consequently, the pressure di�erence changes at a rate given by

d(pn � p0)

dt
= g � � �

dh

dt
= g � � �

 n(t)

Bn
: (II.20.11)

Notice that the pressure p0 is constant and therefore drops out in this formula. Substituting (II.20.11)
in (II.20.10) gives

8n 2 B : Cn
dpn(t)

dt
=

X
ijSi;n=1

�i;n(t) + einn (t)�
X

jjSn;j=1

�n;j(t)� eoutn (t); (II.20.12)

where the quantity Cn := Bn=(� � g) can be interpreted as the capacity of the bu�er at node n.
We arrive at the formulation in x20.2 by setting

y = ( �1;2(t); �2;3(t); �2;6(t); �3;4(t); �3;5(t); �4;5(t); �5;10(t); �6;5(t); �7;4(t);
�7;8(t); �8;5(t); �8;10(t); �9;8(t); �11;9(t); �11;12(t); �12;7(t); �12;8(t); �13;11(t);
�1;2(t); �2;3(t); �2;6(t); �3;4(t); �3;5(t); �4;5(t); �5;10(t); �6;5(t); �7;4(t);
�7;8(t); �8;5(t); �8;10(t); �9;8(t); �11;9(t); �11;12(t); �12;7(t); �12;8(t); �13;11(t);
p5(t); p8(t); p1(t); p2(t); : : : ; p4(t); p6(t); p7(t); p9(t); p10(t); : : : ; p13(t) )T:

(II.20.13)

All pressures are of index 2, except for those at the bu�er nodes. The reordering of the pressures in
(II.20.13) is such that the elements in y appear in order of increasing index, as required by RADAU,
RADAU5 and MEBDFDAE.

The �rst 18 equations in (II.20.1) are obtained by �rst substituting (II.20.5) in (II.20.4). Next, we
divide both sides by Ai;j , thus yielding

� � li;j
Ai;j

d�i;j(t)

dt
= pi(t)� pj(t)� F a

i;j(t)=Ai;j : (II.20.14)

Finally, (II.20.6) and (II.20.7) are substituted in (II.20.14). Consequently, if we de�ne Vi;j = ��li;j=Ai;j ,
then the vector v in (II.20.2) is given by

v = ( V1;2; V2;3; V2;6; V3;4; V3;5; V4;5; V5;10; V6;5; V7;4;
V7;8; V8;5; V8;10; V9;8; V11;9; V11;12; V12;7; V12;8; V13;11 )T:

(II.20.15)

The next 18 equations in (II.20.1) equal (II.20.8), whereas the last 13 equations are given by (II.20.9)
and (II.20.12).

In this model, all tubes and bu�ers are equal with characteristics as speci�ed in Table II.20.2.
Moreover, we assume that the temperature is constant. The values for the physical constants are
listed in Table II.20.3. The values for � and � correspond to a temperature of 10�C. The value for
Rcrit was taken from [Sch78, p. 39].

We now discuss how we derived the initial conditions in (II.20.3). First we note that (II.20.9) is an
index 2 constraint. Therefore, the initial values also have to satisfy the once di�erentiated constraint
(the so-called hidden constraint)

8n 2 N � B : 0 =
X

ijSi;n=1

�0i;n(t) + einn
0
(t)�

X
jjSn;j=1

�0n;j(t)� eoutn
0
(t): (II.20.16)
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Table II.20.2: Characteristics of tubes.

Quantity Value
li;j 1000
ki;j 0:0002
di;j 1
Bi 200

Table II.20.3: Values of physical constants.

Constant Value
� 1:31�10�6

g 9:8
� 1:0 �103

Rcrit 2:3 �103

We are free to choose initial ows �i;j(0) as long as they satisfy (II.20.9); we chose these all equal
to zero. This means that the resistance coe�cients equal the value for the case of laminar ows,
i.e., 0:047519 : : : The pressures at the bu�er nodes, which can be selected freely, are chosen to be
105 + g � �, which corresponds to initial heights of one meter in the water columns, assuming that p0
in Figure II.20.4 equals one bar. From (II.20.12) it follows that p0n(0) = 0, n 2 B (note that the in-
and outows are initially zero). The initial pressures pn(0), n 2 N �B, and the initial derivative ows
�0i;j(0) follow from (II.20.14) and (II.20.16). Since the derivatives of the in- and outows are initially
zero, the initial values in (II.20.3) satisfy these equations. The other initial values, �0i;j(0) and p

0
n(0),

n 2 N �B, appear neither in the system, nor in the hidden constraints, and can be chosen freely. We
set these equal to 0.

Several observations can be made from the behavior of the ows, resistance coe�cients and pres-
sures, which are plotted in Figure II.20.6{II.20.8:

� The rise and fall of the outow in node 10 cause the ows to node 10 to change from laminar
to turbulent and back, as can be seen from the resistance coe�cients �5;10 and �8;10, which
correspond to y25 and y30.

� At 8 AM, the pressures in the bu�er nodes drop below their original level, which means that
some of the water that was present in the bu�ers initially, is used to meet the peak demand.

� The time period in which the ows to node 10 have become laminar again (this period is indicated
by the vertical dashed lines in the plots of y25 and y30, causes an irregular behavior (indicated
again by dashed lines) of the solution components y3, y6, y9, y10 and y11 which correspond to
the ow from node 3 to node 4 and the ows in the cycle 4{7{8{5, respectively.

� Some of the ows contain high-frequent oscillations of small amplitude. To see this more clearly,
we plotted �3;4 for 6878 < t � 17 � 3600 in Figure II.20.5.

20.4 Numerical solution of the problem

Tables II.20.4{II.20.5 and Figures II.20.6{II.20.8 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively.
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Figure II.20.5: Behavior of �3;4 for 6878 < t � 17 � 3600.

Since the 13 last solution components (the pressures) are so much larger in magnitude than the
other components, we used the following vector-valued input tolerances:

atol(i) = atol for i = 1; : : : ; 36;
atol(i) = 106 � atol for i = 37; : : : ; 49;
rtol(i) = rtol for i = 1; : : : ; 49:

The reference solution was computed by PSIDE with rtol = atol = 10�14. For the work-
precision diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 24; atol = rtol; h0 = rtol for BIMD,
GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

The failed runs are in Table II.20.6; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.

.
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Table II.20.4: Reference solution at the end of the integration interval.

y1 0:2298488296477430 � 10�002

y2 0:1188984650746585 � 10�002

y3 0:1109503645730845 � 10�002

y4 0:1589620100314825 � 10�003

y5 0:1030022640715102 � 10�002

y6 0:8710606306836165 � 10�003

y7 0:3243571480903489 � 10�002

y8 0:1109503645730845 � 10�002

y9 0:7120986206521341 � 10�003

y10 0:6414613963833099 � 10�003

y11 0:9416978549524347 � 10�003

y12 0:3403428519096511 � 10�002

y13 0:2397639310739395 � 10�002

y14 0:2397639310739395 � 10�002

y15 0:3348581430454180 � 10�002

y16 0:1353560017035444 � 10�002

y17 0:1995021413418736 � 10�002

y18 0:5746220741193575 � 10�002

y19 0:4751940452918529 � 10�001

y20 0:4751940452918529 � 10�001

y21 0:4751940452918529 � 10�001

y22 0:4751940452918529 � 10�001

y23 0:4751940452918529 � 10�001

y24 0:4751940452918529 � 10�001

y25 0:4311196778792902 � 10�001

y26 0:4751940452918529 � 10�001

y27 0:4751940452918529 � 10�001

y28 0:4751940452918529 � 10�001

y29 0:4751940452918529 � 10�001

y30 0:4249217433601160 � 10�001

y31 0:4732336439609648 � 10�001

y32 0:4732336439609648 � 10�001

y33 0:4270002118868241 � 10�001

y34 0:4751940452918529 � 10�001

y35 0:4751940452918529 � 10�001

y36 0:3651427026675656 � 10�001

y37 0:1111268591478108 � 10+006

y38 0:1111270045592387 � 10+006

y39 0:1111271078730254 � 10+006

y40 0:1111269851929858 � 10+006

y41 0:1111269255355337 � 10+006

y42 0:1111269322658045 � 10+006

y43 0:1111269221703983 � 10+006

y44 0:1111270121140691 � 10+006

y45 0:1111274419515807 � 10+006

y46 0:1111255158881087 � 10+006

y47 0:1111278793439227 � 10+006

y48 0:1111270995171642 � 10+006

y49 0:1111298338971779 � 10+006

Table II.20.5: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�4 3:55 1:23 17 16 250 16 17 0.0420
10�7 10�7 10�7 6:05 3:45 333 314 5830 314 333 0.8989
10�10 10�10 10�10 9:22 7:32 673 586 17454 586 673 2.1101

GAMD 10�4 10�4 10�4 3:51 1:18 18 16 340 16 18 0.0439
10�7 10�7 10�7 5:94 3:40 233 202 8038 204 233 0.7642
10�10 10�10 10�10 9:32 7:18 554 458 22918 448 536 1.9744

MEBDFI 10�4 10�4 10�4 3:85 1:83 81 77 1197 18 18 0.0488
10�7 10�7 10�7 6:32 3:30 1267 1171 13926 192 192 0.5846
10�10 10�10 10�10 9:09 7:18 3189 3037 28403 351 351 1.2561

PSIDE-1 10�4 10�4 4:37 2:45 64 50 799 16 244 0.1015
10�7 10�7 5:80 3:09 134 104 2320 40 468 0.2723
10�10 10�10 7:86 5:45 827 719 14105 39 1292 1.2102



II-20-10 DAE - Water tube system

Figure II.20.6: Behavior of ows over the integration interval.
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Figure II.20.7: Behavior of resistance coe�cients over the integration interval.



II-20-12 DAE - Water tube system

Figure II.20.8: Behavior of pressures over the integration interval.

Table II.20.6: Failed runs.

solver m reason
RADAU 0; : : : 6; 8; 9; 11; 12; 13; 14; 16; : : : ; 20; 24 solver cannot handle IERR=-1.
RADAU5 6 stepsize too small
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Figure II.20.9: Work-precision diagram (scd versus CPU-time).
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Figure II.20.10: Work-precision diagram (scd versus CPU-time).
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Figure II.20.11: Work-precision diagram (mescd versus CPU-time).
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Figure II.20.12: Work-precision diagram (mescd versus CPU-time).
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