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8 Problem VDPOL

8.1 General information

The problem consists of a second order di�erential equation rewritten to �rst order form, thus providing
a system of ordinary di�erential equations of dimension 2. It was proposed by B. van der Pol in the
1920's [vdP20], [vdP26]. The INdAM-Bari Test Set group contributed this problem to the test set.
Most of the documentation about this problem has been retrieved from [EP02]. The software part
of the problem is in the �les vdpol.f and vdpolm.f available at [MM08].

8.2 Mathematical description of the problem

The problem is of the form

z00 = f(z; z0); z(0) = z0 z0(0) = z00;

with
z 2 IR; t 2 [0; T ];

where the function f is given by

f(z; z0) = �(1� z2)z0 � z; � > 0: (II.8.1)

We write this problem to �rst order form by de�ning y1 = z and y2 = z0, yelding a system of 2
nonlinear di�erential equations of the form�

y1
y2

�
0

=

�
y2

f(y1; y2)

�
(II.8.2)

with
(y1; y2)

T 2 IR2; t 2 [0; T ]:

A rescaling of the solutions of (II.8.2) results in the following formulation�
y1
y2

�
0

=

�
y2ef(y1; y2)

�
; (II.8.3)

where ef(y1; y2) = ((1� y21)y2 � y1)=�; � > 0:

Problem (II.8.2) will be referred to as vdpol� and problem (II.8.3) as vdpol�. The initial values are�
y1(0)
y2(0)

�
=

�
z0
z00

�
where

�
z0 = 2
z00 = 0

:

8.3 Origin of the problem

The VDPOL problem originates from electronics and describes the behaviour of nonlinear vacuum
tube circuits. The circuit scheme, designed by Balthazar van der Pol in the 1920's, is given in Figure
II.8.1. This is an RLC loop, but with the passive resistor of Ohm's Law replaced by an active element
which would pump energy into the circuit whenever the amplitude of the current falls below a certain
level. In the 1920's this active element was an array of vacuum tubes, now it is a semiconductor device.
The voltage drop at the semiconductor (which used to be RI) is given by a nonlinear function f(I) of

http://www.dm.uniba.it/~testset/src/problems/vdpol.f
http://www.dm.uniba.it/~testset/src/problems/vdpolm.f
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Figure II.8.1: Negative resistance oscillatory circuit

the current I. If we substitute f(I) for RI in the standard RLC-circuit equation LI 00+RI 0+ I=C = 0,
the current in the circuit turns out to be modeled by

LI 00 + f 0(I)I 0 + I=C = 0: (II.8.4)

In a 1924 study of oscillator circuits in early commercial radios (at Philips research laboratories),
B. van der Pol assumed the voltage drop to be represented by the nonlinear function f(I) = bI3� aI,
which with equation (II.8.4) leads to

LI 00 + (3bI2 � a)I 0 + I=C = 0: (II.8.5)

This equation is also closely related to the equation introduced by the British mathematical physi-
cist Lord Rayleigh (John William Strutt, 1842 - 1919) to model the oscillations of a clarinet reed. For
more details see [EP02].

If we denote by � the time variable in Eq. (II.8.5) and make the substitutions I = pz and t =
�=
p
LC, the result is

d2z

dt2
+ (3bp2z2 � a)

r
C

L

dz

dt
+ z = 0:

With p =
p
a=(3b) and � = a

p
C=L this gives the standard form

z00 + �(z2 � 1)z0 + z = 0

of the van der Pol's equation.
The van der Pol equation is often used as a test problem for ODEs solvers. It has two periodic

solutions, the constant solution, z(t) � 0, that is unstable, and the nontrivial periodic solution (roughly
corresponding to the initial conditions z(0) = 2; z0(0) = 0), that is named `limit cycle' because all the
other nontrivial solutions converge to this one as t!1.

This qualitative behavior is well shown in the phase plane plot in Figure II.8.2 (for � = 2), where
outward and inward spiral trajectories converge to the limit cycle (the closed curve).

The parameter � > 0 weights the importance of the nonlinear part of the equation. When � is
`large' the approach to the limit cycle is quite rapid (see Figure II.8.3 for � = 103) and the van der
Pol equation is more interesting because of the non negligible in
uence of the nonlinear term. From
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Figure II.8.2: Limit cycle for � = 2

an analysis of the behavior of the limit cycle [Sha94] it turns out that it can be described in terms of
portions where the solution components change slowly and the problem is quite sti�, alternating with
regions of very sharp change (quasi-discontinuities) where it is non-sti�. Thus, the problem switches
from sti� to non sti� with a very sharp changing solution that makes the equation quite challenging
for ODEs solvers.

The van der Pol equation may be treated in di�erent ways, the most straightforward is to split the
equation into a system of two �rst order di�erential equations as in (II.8.2). Note that if the second
of the equations is divided by � we get an equation that has the character of a singular perturbation
problem. Several other approaches may show other aspects on the nature of this problem. For example
Hairer and Wanner [HW96] introduce the following scaling transformation of (II.8.2) to make the
steady-state approximation independent of �:

x = t=�; w1(x) = y1(t); w2(x) = �y2(t)

Substituting in (II.8.2) and using again y for w and t for x, the equation (II.8.3) is obtained with
" = 1=�2. The scaled version (II.8.3) has the advantage that a small interval independent of the
parameter value can be considered to track at least one period of the solution.

8.4 Numerical solution of the problem

8.4.1 vdpol� with � = 103 and t 2 [0; 2�]

Tables II.8.1, II.8.2 and Figures II.8.4, II.8.6{II.8.9 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the �rst component of the solution over
the integration interval and the work-precision diagrams, respectively. The reference solution was
computed by RADAU on an Alphaserver DS20E, with a 667 MHz EV67 processor, using double
precision work(1) = uround = 1:01 �10�19, rtol = atol = h0 = 1:1 �10�18. For the work-precision
diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 32; atol = rtol; h0 = 10�2 � rtol for BIMD,
GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.
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Figure II.8.3: Limit cycle for � = 10
3

Figure II.8.4: Behavior of the solution component y1 over the integration interval

8.4.2 vdpol� with � = 10�6 and t 2 [0; 2]

Tables II.8.3, II.8.4 and Figures II.8.5, II.8.10{II.8.13 present the reference solution at the end of
the integration interval, the run characteristics, the behavior of the �rst component of the solution
over the integration interval and the work-precision diagrams, respectively. The reference solution
was computed by RADAU on an Alphaserver DS20E, with a 667 MHz EV67 processor, using double
precision work(1) = uround = 1:01 �10�19, rtol = atol = h0 = 1:1 �10�18. For the work-precision

Table II.8.1: Reference solution at the end of the integration interval.

y1 0:1706167732170469 � 101
y2 �0:8928097010248125 � 10�3
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Table II.8.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 4:05 3:57 133 112 2801 104 133 0.0020
10�7 10�7 10�9 9:18 8:80 224 219 5072 209 224 0.0029
10�10 10�10 10�12 11:17 10:32 250 248 10151 237 250 0.0078

DDASSL 10�4 10�4 2:88 2:37 549 507 940 122 0.0020
10�7 10�7 5:57 5:06 1342 1296 1980 129 0.0049
10�10 10�10 8:25 7:73 4484 4445 5943 168 0.0166

GAMD 10�4 10�4 10�6 4:86 4:30 129 90 5133 91 129 0.0039
10�7 10�7 10�9 7:55 6:71 173 137 9422 141 173 0.0078
10�10 10�10 10�12 9:53 9:17 235 197 16067 201 235 0.0127

MEBDFI 10�4 10�4 10�6 3:31 2:86 477 435 1761 83 83 0.0029
10�7 10�7 10�9 6:11 5:60 1134 1083 3818 118 118 0.0059
10�10 10�10 10�12 9:06 8:55 2135 2098 7215 208 208 0.0107

PSIDE-1 10�4 10�4 6:42 3:43 181 149 2811 57 648 0.0029
10�7 10�7 7:20 6:32 310 293 6141 52 756 0.0059
10�10 10�10 9:99 9:14 1000 990 15536 109 1156 0.0156

RADAU 10�4 10�4 10�6 4:48 4:28 210 172 1822 144 208 0.0010
10�7 10�7 10�9 8:56 8:18 240 222 3508 187 238 0.0020
10�10 10�10 10�12 10:63 9:24 209 176 6240 130 207 0.0039

VODE 10�4 10�4 3:29 3:08 545 487 779 19 117 0.0020
10�7 10�7 5:20 4:73 1614 1502 2145 30 223 0.0049
10�10 10�10 7:49 7:07 4350 4120 5266 72 516 0.0146

diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 32; atol = rtol; h0 = 10�2 � rtol for GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAU5.

Table II.8.3: Reference solution at the end of the integration interval.

y1 0:1706167732170483 � 101
y2 �0:8928097010247975 � 100
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Figure II.8.5: Behavior of the solution component y1 over the integration interval (scaled equation)

Table II.8.4: Run characteristics.
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Figure II.8.6: Work-precision diagram (scd versus CPU-time).
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Figure II.8.7: Work-precision diagram (scd versus CPU-time).
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Figure II.8.8: Work-precision diagram (mescd versus CPU-time).



II-8-10 ODE - Problem VDPOL

Figure II.8.9: Work-precision diagram (mescd versus CPU-time).
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Figure II.8.10: Work-precision diagram (scd versus CPU-time).
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Figure II.8.11: Work-precision diagram (scd versus CPU-time).
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Figure II.8.12: Work-precision diagram (mescd versus CPU-time).
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Figure II.8.13: Work-precision diagram (mescd versus CPU-time).
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