14 Transistor amplifier

14.1 General information

The problem is a stiff DAE of index 1 consisting of 8 equations P. Rentrop has received it from K. Glashoff \& H.J. Oberle and has documented it in [RRS89]. The formulation presented here has been taken from [HLR89]. The parallel-IVP-algorithm group of CWI contributed this problem to the test set.

The software part of the problem is in the file transamp.f available at [MM08].

14.2 Mathematical description of the problem

The problem is of the form

$$
M \frac{\mathrm{~d} y}{\mathrm{~d} t}=f(t, y), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime}
$$

with

$$
y \in \mathbb{R}^{8}, \quad 0 \leq t \leq 0.2
$$

The matrix M is of rank 5 and given by

$$
M=\left(\begin{array}{cccccccc}
-C_{1} & C_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
C_{1} & -C_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -C_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -C_{3} & C_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{3} & -C_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -C_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -C_{5} & C_{5} \\
0 & 0 & 0 & 0 & 0 & 0 & C_{5} & -C_{5}
\end{array}\right)
$$

and the function f by

$$
f(t, y)=\left(\begin{array}{c}
-\frac{U_{e}(t)}{R_{0}}+\frac{y_{1}}{R_{0}} \\
-\frac{U_{b}}{R_{2}}+y_{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-(\alpha-1) g\left(y_{2}-y_{3}\right) \\
-g\left(y_{2}-y_{3}\right)+\frac{y_{3}}{R_{3}} \\
-\frac{U_{b}}{R_{4}}+\frac{y_{4}}{R_{4}}+\alpha g\left(y_{2}-y_{3}\right) \\
-\frac{U_{b}}{R_{6}}+y_{5}\left(\frac{1}{R_{5}}+\frac{1}{R_{6}}\right)-(\alpha-1) g\left(y_{5}-y_{6}\right) \\
-g\left(y_{5}-y_{6}\right)+\frac{y_{6}}{R_{7}} \\
-\frac{U_{b}}{R_{8}}+\frac{y_{7}}{R_{8}}+\alpha g\left(y_{5}-y_{6}\right) \\
\frac{y_{8}}{R_{9}}
\end{array}\right)
$$

where g and U_{e} are auxiliary functions given by

$$
\begin{equation*}
g(x)=\beta\left(e^{\frac{x}{U_{F}}}-1\right) \quad \text { and } \quad U_{e}(t)=0.1 \sin (200 \pi t) \tag{II.14.1}
\end{equation*}
$$

The values of the technical parameters are:

$$
\begin{align*}
U_{b} & =6 \\
U_{F} & =0.026, \tag{5.}\\
\alpha & =0.99, \\
\beta & =10^{-6},
\end{align*} \quad \begin{array}{ll}
R_{0}=1000, \\
R_{k} & =9000 \\
C_{k} & =k \cdot 10^{-6}
\end{array} \text { for } \quad \text { for } k=1, \ldots, 9, \ldots, 5 .
$$

Consistent initial values at $t=0$ are

$$
y_{0}=\left(\begin{array}{c}
0 \\
U_{b} /\left(\frac{R_{2}}{R_{1}}+1\right) \\
U_{b} /\left(\frac{R_{2}}{R_{1}}+1\right) \\
U_{b} \\
U_{b} /\left(\frac{R_{6}}{R_{5}}+1\right) \\
U_{b} /\left(\frac{R_{6}}{R_{5}}+1\right) \\
U_{b} \\
0
\end{array}\right), \quad y_{0}^{\prime}=\left(\begin{array}{c}
51.338775 \\
51.338775 \\
-U_{b} /\left(\left(\frac{R_{2}}{R_{1}}+1\right)\left(C_{2} \cdot R_{3}\right)\right) \\
-24.9757667 \\
-24.9757667 \\
-U_{b} /\left(\left(\frac{R_{6}}{R_{5}}+1\right)\left(C_{4} \cdot R_{7}\right)\right) \\
-10.00564453 \\
-10.00564453
\end{array}\right) .
$$

The first, fourth and seventh component of y_{0}^{\prime} were determined numerically. All components of y are of index 1.

The definition of the function $g(x)$ in (II.14.1) may cause overflow if $\frac{x}{U_{F}}$ becomes too large. In the Fortran subroutines feval and jeval that define the function f and the partial derivatives of f with respect to y, respectively, we set IERR=-1 if $\frac{x}{U_{F}}>300$ to prevent this situation. See page $I V$-ix of the description of the software part of the test set for more details on IERR.

14.3 Origin of the problem

The problem originates from electrical circuit analysis. It is a model for the transistor amplifier. The diagram of the circuit is given in Figure II.14.1. Here U_{e} is the input signal and U_{8} is the amplified

Figure II.14.1: Circuit diagram of Transistor Amplifier (taken from [HLR89]).

Figure II.14.2: Schematic representation of a transistor.
output voltage. The circuit contains two transistors of the form depicted in Figure II.14.2. As a simple model for the behavior of the transistors we assume that the currents through the gate, drain and source, which are denoted by I_{G}, I_{D} and I_{S}, respectively, are

$$
\begin{array}{rrr}
I_{G} & = & (1-\alpha) g\left(U_{G}-U_{S}\right), \\
I_{D} & = & \alpha g\left(U_{G}-U_{S}\right), \\
I_{S} & = & g\left(U_{G}-U_{S}\right),
\end{array}
$$

where U_{G} and U_{S} denote the voltage at the gate and source, respectively, and $\alpha=0.99$. For the function g we take

$$
g\left(U_{i}-U_{j}\right)=\beta\left(\mathrm{e}^{\frac{U_{i}-U_{j}}{U_{F}}}-1\right)
$$

where $\beta=10^{-6}$ and $U_{F}=0.026$.
To formulate the governing equations, Kirchoff's Current Law is used in each numbered node. This law states that the total sum of all currents entering a node must be zero. All currents passing through the circuit components can be expressed in terms of the unknown voltages U_{1}, \ldots, U_{8}. Consider for instance node 1 . The current $I_{C_{1}}$ passing through capacitor C_{1} is given by

$$
I_{C_{1}}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{1}\left(U_{2}-U_{1}\right)\right)
$$

and the current $I_{R_{0}}$ passing through the resistor R_{0} by

$$
I_{R_{0}}=\frac{U_{e}-U_{1}}{R_{0}}
$$

Here, the currents are directed towards node 1 if the current is positive. A similar derivation for the

Table II.14.1: Failed runs.

solver	m	reason
RADAU	$0, \ldots, 8,30$	solver cannot handle IERR=-1.
RADAU5	$0, \ldots, 8$	solver cannot handle IERR=-1.

other nodes gives the system:

$$
\begin{array}{lll}
\text { node 1: } & \frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{1}\left(U_{2}-U_{1}\right)\right)+\frac{U_{e}(t)}{R_{0}}-\frac{U_{1}}{R_{0}} & =0 \\
\text { node 2: } & \frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{1}\left(U_{1}-U_{2}\right)\right)+\frac{U_{b}}{R_{2}}-U_{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+(\alpha-1) g\left(U_{2}-U_{3}\right) & =0 \\
\text { node 3: } & -\frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{2} U_{3}\right)+g\left(U_{2}-U_{3}\right)-\frac{U_{3}}{R_{3}} & =0 \\
\text { node 4: } & -\frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{3}\left(U_{4}-U_{5}\right)\right)+\frac{U_{b}}{R_{4}}-\frac{U_{4}}{R_{4}}-\alpha g\left(U_{2}-U_{3}\right) & =0, \\
\text { node 5: } & \frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{3}\left(U_{4}-U_{5}\right)\right)+\frac{U_{b}}{R_{6}}-U_{5}\left(\frac{1}{R_{5}}+\frac{1}{R_{6}}\right)+(\alpha-1) g\left(U_{5}-U_{6}\right) & =0 \\
\text { node 6: } & -\frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{4} U_{6}\right)+g\left(U_{5}-U_{6}\right)-\frac{U_{6}}{R_{7}} & =0, \\
\text { node 7: } & -\frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{5}\left(U_{7}-U_{8}\right)\right)+\frac{U_{b}}{R_{8}}-\frac{U_{7}}{R_{8}}-\alpha g\left(U_{5}-U_{6}\right) & =0 \\
\text { node 8: } & -\frac{\mathrm{d}}{\mathrm{~d} t}\left(C_{5}\left(U_{7}-U_{8}\right)\right)+\frac{U_{8}}{R_{9}} & =0
\end{array}
$$

The input signal $U_{e}(t)$ is

$$
U_{e}(t)=0.1 \sin (200 \pi t)
$$

To arrive at the mathematical formulation of the preceding subsection, one just has to identify U_{i} with y_{i}.

From the plot of output signal $U_{8}=y(8)$ in Figure II.14.2 we see that the amplitude of the input signal U_{e} is indeed amplified.

14.4 Numerical solution of the problem

Tables II.14.2-II.14.3 and Figures II.14.3-II.14.4 present the reference solution at the end of the integration interval, the run characteristics, the behavior of the solution over the integration interval and the work-precision diagrams, respectively. The reference solution was computed on the Cray C90, using PSIDE with Cray double precision and atol $=\mathrm{rtol}=10^{-14}$. For the work-precision diagrams, we used: rtol $=10^{-(4+m / 8)}, m=0,1, \ldots, 40$; atol $=\mathrm{rtol} ; \mathrm{h} 0=10^{-2} \cdot \mathrm{rtol}$ for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

The failed runs are in Table II.14.1; listed are the name of the solver that failed, for which values of m this happened, and the reason for failing.

References

[HLR89] E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics 1409. Springer-Verlag, 1989.

TABLE II.14.2: Reference solution at the end of the integration interval.

y_{1}	$-0.5562145012262709 \cdot 10^{-2}$	y_{5}	$0.2704617865010554 \cdot 10$
y_{2}	$0.3006522471903042 \cdot 10$	y_{6}	$0.2761837778393145 \cdot 10$
y_{3}	$0.2849958788608128 \cdot 10$	y_{7}	$0.4770927631616772 \cdot 10$
y_{4}	$0.2926422536206241 \cdot 10$	y_{8}	$0.1236995868091548 \cdot 10$

Table II.14.3: Run characteristics.

solver	rtol	atol	h0	mescd	scd	steps	accept	\#f	\#Jac	\#LU	CPU
BIMD	10^{-4}	10^{-4}	10^{-6}	5.85	5.63	466	408	8423	408	466	0.0322
	10^{-7}	10^{-7}	10^{-9}	8.62	8.34	618	575	19632	575	618	0.0752
DDASSL	10^{-4}	10^{-4}		4.60	3.08	9759	6026	18381	7359		0.1113
	10^{-7}	10^{-7}		7.24	5.49	40810	23859	77402	33678		0.4743
GAMD	10^{-4}	10^{-4}	10^{-6}	6.30	5.83	373	276	17204	276	373	0.0517
	10^{-7}	10^{-7}	10^{-9}	8.58	7.37	374	325	34320	326	374	0.1064
MEBDFI	10^{-4}	10^{-4}	10^{-6}	5.06	4.80	1580	1486	5949	256	256	0.0303
	10^{-7}	10^{-7}	10^{-9}	7.25	6.99	3628	3513	13324	419	419	0.0703
PSIDE-1	10^{-4}	10^{-4}		5.02	4.76	516	362	9742	253	2008	0.0351
	10^{-7}	10^{-7}		7.50	7.23	835	653	21914	419	2724	0.0732
RADAU	10^{-7}	10^{-7}	10^{-9}	7.11	6.83	1775	1551	17582	1541	1775	0.0517

[MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4. Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008. Available at http://www.dm.uniba.it/~testset.
[RRS89] P. Rentrop, M. Roche, and G. Steinebach. The application of Rosenbrock-Wanner type methods with stepsize control in differential-algebraic equations. Numer. Math., 55:545563, 1989.

Figure II.14.3: Behavior of the solution over the integration interval.

Figure II.14.4: Work-precision diagram (scd versus CPU-time).

Figure II.14.5: Work-precision diagram (scd versus CPU-time).

Figure II.14.6: Work-precision diagram (mescd versus CPU-time).

Figure II.14.7: Work-precision diagram (mescd versus CPU-time).

