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16 Two bit adding unit

16.1 General Information

The problem is a sti� DAE of index 1, consisting of 175 di�erential equations and 175 algebraic
equations. It has been contributed by M. G�unther [G�un95, G�un98].

The software part of the problem is in the �le tba.f available at [MM08].

16.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(t; x); (II.16.1)

0 = y � g(x);

where

y; x 2 IR175; f : IR351
! IR350; g : IR350

! IR350; 0 � t � 320; y(0) = y0; x(0) = x0:

Since the functions f(t; x) and g(x) and the (consistent) initial values y0 and x0 are too voluminous
to be printed here, we refer to the subroutines feval and init for their de�nitions. The function f
has discontinuities in its derivative at t = 0; 5; 10; : : : ; 320. The index of the components of x and y
equals 1.

The function f contains several square roots. It is clear that the function can not be evaluated if
one of the arguments of one of these square roots becomes negative. To prevent this situation, we set
IERR=-1 in the Fortran subroutine that de�nes f if this happens. See page IV-ix of the description of
the software part of the test set for more details on IERR.

16.3 Origin of the problem

The two bit adding unit computes the sum of two base-2 numbers (each two digits long) and a carry
bit. These numbers are fed into the circuit in the form of input signals. As a result the circuit gives
their sum coded as three output signals.

The two bit adding unit circuit is a digital circuit. These circuits are used to compute boolean
expressions. This is accomplished by associating voltages with boolean variables. By convention the
boolean is true if the voltage exceeds 2V , and false if it is lower than 0:8V . In between the boolean
is unde�ned. Using CMOS technique, however, sharper bounds are possible for the representation of
booleans.

Digital circuits that compute elementary logical operations are called gates. An example of a gate
is the NAND gate of test problem 9. This circuit is used to compute the logical expression :(V1^V2),
where V1 and V2 are the booleans that are fed into the circuit as input signals.

The two bit adding unit is depicted in Figure II.16.1. In this �gure the symbols `&', `� 1' and a
little white circle respectively stand for the AND, OR and NOT gate. A number of input signals and
output signals enter and leave the circuit. Each signal is described by a time-dependent voltage and
the boolean it represents. For these two quantities we shall use one symbol: the symbol of this boolean
variable. Which one of the two quantities is meant by the symbol, is always clear from the context.
With this convention, the input signals are referred to by the boolean variable they represent.

The circuit is designed to perform the addition

A1 A0 +B1 B0 + Cin = C S1 S0:

http://www.dm.uniba.it/~testset/src/problems/tba.f
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Figure II.16.1: Circuit diagram of the two bit adder (taken from [G�un95]).
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Table II.16.1: Characteristics of the gates that occur in the two bit adding unit.

Name logical expression # nodes # times
NOR :(V1 _ V2) 3 � 4 + 1 = 13 3
NAND :(V1 ^ V2) 3 � 4 + 2 = 14 1
ANDOI :(V1 _ (V2 ^ V3)) 4 � 4 + 2 = 18 5
ORANI :(V1 ^ (V2 _ V3)) 4 � 4 + 2 = 18 1

The input signals representing the two numbers and the carry bit Cin are fed into the circuit at the
nodes indicated by A0, A1, B0, B1 and Cin. Here, a bar denotes the logical inversion. The output
signals are delivered by the nodes indicated by S0, S1 and C.

In Figure II.16.1, a number of boxes are drawn using dashed lines. Each of them represents one
of the following gates: the NOR (�rst box to the left in the top-row), the ORANI gate (the box
besides S1), the NAND (the box besides the ORANI gate) and the ANDOI(the box at the bottom).
The circuit diagram of the NAND-gate is given in test problem 9. For the circuit diagrams of the
NOR, ANDOI and ORANI gate see Figures II.16.2, II.16.3 and II.16.4. What logical expressions they
compute, is listed in Table II.16.1. The fourth column in this table lists the number of times the gate
occurs in the big circuit. The third column tabulates the number of nodes in the gate. These nodes
consist of two types. The �rst type of nodes consists of the internal nodes of the transistors due to the
MOS transistor model of Shichmann and Hodges [SH68]. Each transistor has four internal nodes that
are also the links between transistor and the rest of the circuit. The second type of nodes comprises
the usual nodes that are used to link circuit components together. These nodes are indicated by a
number placed inside a square. To prevent any misunderstanding, we remark that the big dots in
Figures II.16.2{II.16.4 do not represent nodes.

The connection of a gate with the rest of the circuit consists of the input nodes and the output
node of the gate. The input signals enter the gate at the nodes with symbol V1, V2 and V3. The
output signal leaves the gate from one of the numbered nodes. To ensure stability of the circuit, such
an output node is always connected to a capacitance (we refer to the Fortran driver: CLOAD denoting
the value of a load capacitance for the logical gates, and COUT for the output nodes S0; S1 and C).
Finally, three enhancement transistors are coupled with the ANDOI gate at the bottom for a correct
treatment of Cin. This yields 12 internal nodes and two additional nodes, because the three transistors
are coupled in series. Counting all nodes we have 3 � 13 + 1 � 14 + 5 � 18 + 1 � 18 + 14 = 175 nodes.

Applying Kircho�'s law to all nodes yields a system of 175 equations. This system is an integral
form DAE of the special form

A � _q(V ) = f(t; V ):

The function q is a generally nonlinear function of node potentials V , which describes the charges
stored in all charge storing elements [GDF96]. Assembling the charge ow at each node by an incidence
matrix A, the dynamic part A� _q(V ) equals the contribution of static currents denoted by f(t; V ). If all
load capacitances at the output nodes are nonzero, then the integral form DAE has di�erential index 0.
If only one of the load capacitances equals zero, the generalized capacitance matrix A � @q(V )=@V is
singular, yielding a system of di�erential index 1. This shows the regularization e�ects by applying
additional capacitances. Here, we use CLOAD=0 and COUT=2.0.

To make this problem suitable for the solvers used in this test set, the variable Q = A � q(V ) of
assembled charges is introduced leading to

_Q = f(t; V );

0 = Q�Aq(V ):

This transformation of the integral form DAE into a linearly implicit system raises the di�erential
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index by one. However, in the case of singular load capacitances, no higher index e�ects are detected
in the sense of an appropriate perturbation index [G�un98].

Some of the 175 variables have a special meaning. These are the voltage variables of the nodes
that deliver the output signals. The output signals S0, S1 and C are given by the variables x49, x130
and x148, respectively. Only these variables are of interest to the engineer.

In the next section we shall see the two bit adder in operation. Every 10 units of time the addition

A1 A0 +B1 B0 + Cin = C S1 S0;

is carried out. The numbers that are added are represented by the input signals depicted in Fig-
ure II.16.5. The outcome of the addition is represented by output signals given in Figure II.16.6.
Often the output signals need time to adjust to changes in the input signal. Therefore, only during
certain periods the sum is correctly represented by the output signals. The two bit adding unit has
been designed in such a way that after each 10 units of time the output signal represents the sum
correctly.

To see the two bit adding unit performing an addition let us see what happens at t = 200. Then
the input signals read:

A0 = 0; A1 = 1; B0 = 0; B1 = 0; Cin = 1;

and the output signals are
S0 = 1; S1 = 0; C = 0:

Recall, that a bar denotes the logical inverse. Clearly, the addition 01+11+1=101 has been carried
out.

16.4 Numerical solution of the problem

M. G�unther provided the source code that de�nes the problem.
Table II.22.2 lists the voltages of the output signals in the reference solution. For the complete

reference solution at t = 320 we refer to subroutine solut. Since these components refer to the output

Table II.16.2: Value at the end of the integration interval of the components of the reference solution that correspond
to the output signals.

x49 0:2040419147264534
x130 0:4997238455712048 � 10
x148 0:2038985905095614

signals S0, S1 and C, they are the physically relevant quantities.
Table II.16.4 and Figures II.16.6{II.16.10 present the run characteristics, the behavior of the output

signals over the integration interval and the work-precision diagram, respectively. In computing the scd
values, only x49; x130 and x148 were considered, since they refer to the physically important quantities.

The reference solution was computed using RADAU5 without restarts in the discontinuities in
time of the derivative of the problem de�ning function f , with rtol = atol = 10�5 and h0 = 4 � 10�5.

For the work-precision diagram, we used: rtol = 10�(2+m=8), m = 0; 1; : : : ; 32; atol = rtol; h0 =
10 � rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5. The failed runs are in
Table II.16.3; listed are the name of the solver that failed, for which values of m this happened, and
the reason for failing.
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Table II.16.3: Failed runs.

solver m reason
BIMD 27; : : : ; 32 more than nmax steps are needed
DASSL 30; 31; 32 corrector failed to converge repeatedly
GAMD 25, . . . ,29 stepsize too small
MEBDFDAE 0; 1 stepsize too small
MEBDFDAE 2; : : : ; 18 illegal function call
PSIDE-1 0; : : : ; 24 stepsize too small
RADAU 0; 1; : : : ; 17 solver cannot handle IERR=-1.
RADAU5 0; 1; : : : ; 17 solver cannot handle IERR=-1.

Remark

M. G�unther also wrote a special purpose solver called CHORAL, which stands for CHarge-ORiented
ALgorithm [G�un95, G�un98] for integrating equations of the form

dy

dt
= f(t; x);

0 = y � q(x):

Most equations occurring in circuit analysis are of this form. In these equations the variables y and
x represent respectively (assembled) charges and voltages. CHORAL is based on Rosenbrock-Wanner
methods, while the special structure of the problem is exploited. The code eliminates the y variables,
reducing the linear algebra work to solving systems of order 175 instead of 350. Correspondingly, a
step size prediction and error control based directly on node potentials and currents is o�ered. For
more information see

http://www.math.uni-wuppertal.de/~guenther.
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Figure II.16.2: Circuit diagram of the NOR gate (taken from [G�un95]).

Figure II.16.3: Circuit diagram of the ANDOI gate (taken from [G�un95]).
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Figure II.16.4: Circuit diagram of the ORANI gate (taken from [G�un95]).
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Figure II.16.5: The input signals A0, A1, B0, B1 and C.
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Figure II.16.6: Behavior of the output signals S0, S1 and C over the integration interval.
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Figure II.16.7: Work-precision diagram (scd versus CPU-time).
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Figure II.16.8: Work-precision diagram (scd versus CPU-time).
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Figure II.16.9: Work-precision diagram (mescd versus CPU-time).
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Figure II.16.10: Work-precision diagram (mescd versus CPU-time).
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