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4 Medical Akzo Nobel problem

4.1 General information

The problem consists of 2 partial di�erential equations. Semi-discretization of this system yields a
sti� ODE. The parallel-IVP-algorithm group of CWI contributed this problem to the test set in
collaboration with R. van der Hout from Akzo Nobel Central Research.

The software part of the problem is in the �le medakzo.f available at [MM08].

4.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(t; y); y(0) = g; (II.4.1)

with
y 2 IR2N ; 0 � t � 20:

Here, the integer N is a user-supplied parameter. The function f is given by

f2j�1 = �j
y2j+1 � y2j�3

2��
+ �j

y2j�3 � 2y2j�1 + y2j+1

(��)2
� k y2j�1y2j ;

f2j = �k y2jy2j�1;

where

�j =
2(j�� � 1)3

c2
;

�j =
(j�� � 1)4

c2
:

Here, j ranges from 1 to N , �� = 1
N , y

�1(t) = �(t), y2N+1 = y2N�1 and g 2 IR2N is given by

g = (0; v0; 0; v0; : : : ; 0; v0)
T:

The function � is given by

�(t) =

�
2 for t 2 (0; 5];
0 for t 2 (5; 20]:

which means that f undergoes a discontinuity in time at t = 5. Suitable values for the parameters k,
v0 and c are 100, 1 and 4, respectively.

4.3 Origin of the problem

The Akzo Nobel research laboratories formulated this problem in their study of the penetration of
radio-labeled antibodies into a tissue that has been infected by a tumor [Hou94]. This study was
carried out for diagnostic as well as therapeutic purposes.

Let us consider a reaction di�usion system in one spatial dimension:

@u

@t
=

@2u

@x2
� kuv; (II.4.2)

@v

@t
= �kuv; (II.4.3)

http://www.dm.uniba.it/~testset/src/problems/medakzo.f
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which originates from the chemical reaction

A+B
k
! C:

Here A, the radio-labeled antibody, reacts with substrate B, the tissue with the tumor, and k denotes
the rate constant. The concentrations of A and B are denoted by u and v, respectively. In the
derivation of the equations (II.4.2) and (II.4.3) it was assumed that the reaction is governed by mass
action kinetics and in addition that the chemical A is mobile while B is immobile.

Consider a clean semi-in�nite slab, in which the substrate B is uniformly distributed. When the
slab is exposed at its surface to the chemical A, this chemical starts to penetrate into the slab.

To model this penetration, the equations (II.4.2) and (II.4.3) are considered in the strip

ST = f(x; t) : 0 < x <1; 0 < t < Tg for some T;

along with the following initial and boundary conditions:

u(x; 0) = 0; v(x; 0) = v0 for x > 0;

where v0 is a constant, and
u(0; t) = �(t) for 0 < t < T:

In order to solve the problem numerically, we transform the variable x in such a way that the semi-
in�nite slab is transformed into a �nite one. A suitable transformation is provided by the following
special family of M�obius transformations:

� =
x

x+ c
; with c > 0:

Each transformation in this class transforms ST into the slab:

f(�; t) : 0 < � < 1; 0 < t < Tg:

In terms of � the problem now reads:

@u

@t
=

(� � 1)4

c2
@2u

@�2
+

2(� � 1)3

c2
@u

@�
� kuv; (II.4.4)

@v

@t
= �kuv; (II.4.5)

with initial conditions
u(�; 0) = 0; v(�; 0) = v0 for � > 0; (II.4.6)

and boundary conditions

u(0; t) = �(t);
@u

@�
(1; t) = 0 for 0 < t < T: (II.4.7)

The last boundary condition is derived from @u
@x (1; t) = 0.

The system consisting of (II.4.4), (II.4.5), (II.4.6) and (II.4.7) will be written as a system of
ordinary di�erential equations by using the method of lines, i.e. by discretizing the spatial derivatives.
We use the uniform grid f�jgj=1;:::;N de�ned by:

�j = j ���; j = 1; : : : ; N; �� =
1

N
:
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Let uj and vj denote the approximations of u(�j ; t) and v(�j ; t), respectively. Obviously, uj and vj
are functions of t. In terms of the function uj , our choices for the discretization of the spatial �rst
and second order derivatives read

@uj

@�
=

uj+1 � uj�1

2��
and

@2uj

@�2
=

uj�1 � 2uj + uj+1

(��)2
;

respectively, where j = 1; : : : ; N . Suitable values for u0 and uN+1 are obtained from the boundary
conditions. They are given by u0 = �(t) and uN+1 = uN .

De�ning y(t) by y = (u1; v1; u2; v2; : : : ; uN ; vN )
T; and choosing T = 20, this semi-discretized

problem is precisely the ODE (II.4.1).
To give an idea of the solution to the PDE (II.4.4){(II.4.7), Figure II.4.1 plots u and v as function

of x and t. We nicely see that injection of chemical A (locally) destroys B.

Figure II.4.1: u and v as function of time and space.

4.4 Numerical solution of the problem

The numerical experiments were done for the case N = 200. In Table II.4.1 we give the value of
some components of the reference solution at the end of the integration interval. These components
correspond to the values of u and v in x = 1, 2:4, 4:0 and 6:0. For the complete reference solution we
refer to the Fortran subroutine solut. Figure II.4.2 plots the behavior of the solution components yi
for i 2 f79; 80; 133; 134; 171; 172; 199; 200g, which correspond to approximations of the PDE solutions
u and v on the grid lines x = 1, 2, 3 and 4. Table II.4.2 and Figures II.4.3{II.4.6 show the run
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Table II.4.1: Reference solution at the end of the integration interval.

y79 0:2339942217046434 � 10�3

y80 �0:1127916494884468 � 10�141

y149 0:3595616017506735 � 10�3

y150 0:1649638439865233 � 10�86

y199 0:11737412926802 � 10�3

y200 0:61908071460151 � 10�5

y239 0:68600948191191 � 10�11

y240 0:99999973258552

Table II.4.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�9 4:94 4:92 110 110 1565 90 110 0.1932
10�7 10�7 10�12 8:19 8:13 125 125 3496 115 125 0.4451

DDASSL 10�4 10�4 3:41 3:35 381 373 550 46 0.1200
10�7 10�7 5:69 5:69 1378 1369 1700 62 0.3972

GAMD 10�4 10�4 10�9 5:03 5:01 66 66 2116 66 66 0.2235
10�7 10�7 10�12 7:79 7:78 104 104 4760 104 104 0.5290

MEBDFI 10�4 10�4 10�9 3:95 3:94 375 361 1238 70 70 0.2235
10�7 10�7 10�12 7:44 7:43 826 803 2749 104 104 0.5046

PSIDE-1 10�4 10�4 5:16 5:00 118 83 1263 34 456 0.1776
10�7 10�7 7:18 7:12 159 145 2838 109 624 0.3445

RADAU 10�4 10�4 10�9 3:87 3:82 93 93 747 60 93 0.0859
10�7 10�7 10�12 6:93 6:92 100 100 1807 58 100 0.1972

VODE 10�4 10�4 2:84 2:84 364 359 506 10 62 0.0625
10�7 10�7 5:62 5:61 1036 1023 1217 19 101 0.1571

characteristics, and the work-precision diagrams, respectively. The reference solution was computed
on the Cray C90, using PSIDE with Cray double precision and atol = rtol = 10�10. For the work-
precision diagrams, we used: rtol = 10�(4+m=8), m = 0; 1; : : : ; 40; atol = rtol; h0 = 10�5 � rtol for
BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5. Since some solution components
are zero, all scd values presented here denote absolute precision.
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Figure II.4.2: Behavior of some solution components over the integration interval.
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Figure II.4.3: Work-precision diagram (scd versus CPU-time).
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Figure II.4.4: Work-precision diagram (scd versus CPU-time).
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Figure II.4.5: Work-precision diagram (mescd versus CPU-time).
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Figure II.4.6: Work-precision diagram (mescd versus CPU-time).
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