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4 Medical Akzo Nobel problem

4.1 General information

The problem consists of 2 partial differential equations. Semi-discretization of this system yields a
stiff ODE. The parallel-IVP-algorithm group of CWI contributed this problem to the test set in
collaboration with R. van der Hout from Akzo Nobel Central Research.

The software part of the problem is in the file medakzo.f available at | ]

4.2 Mathematical description of the problem
The problem is of the form

dy
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with
yeR®, 0<t<20.

Here, the integer N is a user-supplied parameter. The function f is given by
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Here, j ranges from 1 to N, A = %, y_1(t) = (), yans1 = yan_1 and g € IR?Y is given by
g= (0,’[)0, 07”07 LR 07UO)T~

The function ¢ is given by
| 2 for te(0,5],
o(t) = { 0 for te (5,20].

which means that f undergoes a discontinuity in time at ¢ = 5. Suitable values for the parameters £k,
vg and ¢ are 100, 1 and 4, respectively.

4.3 Origin of the problem

The Akzo Nobel research laboratories formulated this problem in their study of the penetration of
radio-labeled antibodies into a tissue that has been infected by a tumor | ]. This study was
carried out for diagnostic as well as therapeutic purposes.

Let us consider a reaction diffusion system in one spatial dimension:
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http://www.dm.uniba.it/~testset/src/problems/medakzo.f
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which originates from the chemical reaction

A+BAC

Here A, the radio-labeled antibody, reacts with substrate B, the tissue with the tumor, and k& denotes
the rate constant. The concentrations of A and B are denoted by w and v, respectively. In the
derivation of the equations (I1.4.2) and (I1.4.3) it was assumed that the reaction is governed by mass
action kinetics and in addition that the chemical A is mobile while B is immobile.

Consider a clean semi-infinite slab, in which the substrate B is uniformly distributed. When the
slab is exposed at its surface to the chemical A, this chemical starts to penetrate into the slab.

To model this penetration, the equations (I1.4.2) and (I1.4.3) are considered in the strip

Sr={(z,t): 0<z <00, 0<t<T} forsomeT,
along with the following initial and boundary conditions:
u(z,0) =0, v(z,0) =vy forz >0,

where vg is a constant, and
u(0,t) = ¢(t) for0<t<T.

In order to solve the problem numerically, we transform the variable z in such a way that the semi-
infinite slab is transformed into a finite one. A suitable transformation is provided by the following
special family of Md&bius transformations:

(=2 withe> 0.
T+ c

Each transformation in this class transforms St into the slab:
{(G1):0<¢<L, 0<t<T}

In terms of ¢ the problem now reads:

du  ((—1)*u  2(¢-1)%0u

9% 2o + 2 ac kuwv, (I1.4.4)

Jv

i —kuwv, (I1.4.5)
with initial conditions

u(¢,0) =0, v(¢,0) =vg for¢ >0, (I1.4.6)
and boundary conditions
Ju .
u(0,t) = ¢(t), 8—C(1,t) =0 forO<t<T. (I1.4.7)
ou

The last boundary condition is derived from §%(oc0,t) = 0.

The system consisting of (I1.4.4), (II.4.5), (I1.4.6) and (I1.4.7) will be written as a system of
ordinary differential equations by using the method of lines, i.e. by discretizing the spatial derivatives.
We use the uniform grid {{;};=1, ..~ defined by:
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Let u; and v; denote the approximations of w({;,t) and v((;,t), respectively. Obviously, u; and v;
are functions of ¢. In terms of the function w;, our choices for the discretization of the spatial first
and second order derivatives read

ou;  Ujp1 — Ui Ou; w1 — 2u; + Ui
g %t J and jg . %y—1 J j+

a¢ 2A¢ acz (A¢)? ’

respectively, where 7 = 1,..., N. Suitable values for uy and uy,;1 are obtained from the boundary
conditions. They are given by ug = ¢(t) and uy 1 = uy.

Defining y(t) by y = (u1,vi,us,vs,...,un,vn)", and choosing T = 20, this semi-discretized
problem is precisely the ODE (I1.4.1).

To give an idea of the solution to the PDE (I1.4.4)—(11.4.7), Figure I1.4.1 plots « and v as function
of z and ¢. We nicely see that injection of chemical A (locally) destroys B.

x-axis

FIGURE 11.4.1: u and v as function of time and space.

4.4 Numerical solution of the problem

The numerical experiments were done for the case N = 200. In Table I1.4.1 we give the value of
some components of the reference solution at the end of the integration interval. These components
correspond to the values of v and v in z =1, 2.4, 4.0 and 6.0. For the complete reference solution we
refer to the Fortran subroutine solut. Figure 11.4.2 plots the behavior of the solution components y;
for i € {79,80,133,134,171,172,199, 200}, which correspond to approximations of the PDE solutions
u and v on the grid lines z = 1, 2, 3 and 4. Table I[.4.2 and Figures 11.4.3-11.4.6 show the run
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TABLE 11.4.1: Reference solution at the end of the integration interval.

yro | 0.2339942217046434-10 3 || y1oe | 0.11737412926802 - 103
yso | —0.1127916494884468 - 10~141 || 4300 | 0.61908071460151 - 10~°
yiao | 0.3595616017506735 - 10~3 || 3230 | 0.68600948191191 - 10~
yiso | 0.1649638439865233 - 1056 || 4240 | 0.99999973258552

TABLE 11.4.2: Run characteristics.

solver rtol  atol  hO mescd  scd steps accept #f  #Jac #LU CPU

BIMD 107 107* 107° 4.94 4.92 110 110 1565 90 110 0.1932
10°7 1077 107!2 819 8&.13 125 125 3496 115 125 0.4451

DDASSL  10=* 10~* 341 3.35 381 373 550 46 0.1200
10-7 1077 5.69 5.69 1378 1369 1700 62 0.3972
GAMD 107 107 10°° 5.03 5.01 66 66 2116 66 66 0.2235

1077 1007 1072 779 T8 104 104 4760 104 104 0.5290
MEBDFI 10=* 10=* 107° 3.95 3.94 375 361 1238 70 70 0.2235
10°7 1077 107!2 744  7.43 826 803 2749 104 104 0.5046

PSIDE-1  10=* 10~* 5.16  5.00 118 83 1263 34 456 0.1776
1077 1077 718 7.12 159 145 2838 109 624 0.3445
RADAU 10% 107* 10° 3.87 3.82 93 93 47 60 93 0.0859
1077 1007 1072 6.93 6.92 100 100 1807 98 100  0.1972
VODE 0= 107* 2.84 2.84 364 359 506 10 62 0.0625
10=7 1077 5.62 5.61 1036 1023 1217 19 101 0.1571

characteristics, and the work-precision diagrams, respectively. The reference solution was computed
on the Cray C90, using PSIDE with Cray double precision and atol = rtol = 107!°. For the work-
precision diagrams, we used: rtol = 10~(*+m/8) 4 = 0,1,...,40; atol = rtol; h0 = 107> - rtol for
BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5. Since some solution components
are zero, all scd values presented here denote absolute precision.
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FIGURE 11.4.2: Behavior of some solution components over the integration interval.
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Madical Akzo Mobel problem
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Ficure 11.4.3: Work-precision diagram (scd versus CPU-time).
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Madical Akzo Mobel problem
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Ficurg 11.4.4: Work-precision diagram (scd versus CPU-time).
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Madical Akzo Mobel problem
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Ficure 11.4.5: Work-precision diagram (mescd versus CPU-time).
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FIGURE 11.4.6: Work-precision diagram (mescd versus CPU-time).
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