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18 Fekete problem

18.1 General information

The problem is an index 2 DAE from mechanics. The dimension is 8N, where N is a user supplied
integer. The numerical tests shown here correspond to N = 20. The problem is of interest for
the computation of the elliptic Fekete points | ]. The parallel-IVP-algorithm group of CWI
contributed this problem to the test set, in collaboration with W. J. H. Stortelder. The software part
of the problem is in the file fekete.f available at | ]

18.2 Mathematical description of the problem
The problem is of the form

d
mEY—

3 =W, y(0) =y, y'(0) = yp, (IL.18.1)

with
yufEIRsN: OStStentb

Here, teng = 1000, N = 20 and M is the (constant) mass matrix given by

[ Ien O
u= (0.
where Igy is the identity matrix of dimension 6/N. For the definition of the function f, we refer to

§18.3.
The components yg,; of of the initial vector yy are defined by

Y0,3(j—1)+1 cos(w;) cos(B;)
Yos(j—1)+2 | = | sin(wy)cos(5)) for j=1,...,N,
Y0,3(j—1)+3 sin(5;)
where o
B; = %ﬂ' and w; = %]ﬂ—l—ll—gﬁ for j=1,...,3,
Bi = g oand w; = @ﬂ—l—%w for j=4,...,10,
B; = —12—57r and w; = nglo)w + %w for j=11,...,16,
B; = —&n and w; = x4 Lo for j=17,...,20,
and
Yo,i = 0 for i=3N+1,...,6N,
Yoon+; = 3(p;(0),f;) for j=1,...,N,
Yo,i =0 for i=7N+1,...,8N,
where .
Ys(j—1)+1 =N f3N+3 (j— 1)+1((p(0), 0,...,00%)
pi= | vsg-v+2 |, fi=1| fongsg—n)+2((p (0),0,...,0);) , (11.18.2)
Y3(j—1)+3 f3N+3 (j—1 +3(( (0),0,...,001)

and p = (y1,Y2,--.,ysn) . The initial derivative vector reads v}, = f(yo). These definitions of y, and
o vield consistent initial values. The first 6N components are of index 1, the last 2V of index 2.


http://www.dm.uniba.it/~testset/src/problems/fekete.f
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FIGURE 11.18.1: Final configuration for N = 20. The large ball is centered at the origin and only added to facilitate
the 3-D perception. (Taken from [PSS97] by courtesy of R. van Liere.)

18.3 Origin of the problem

This problem is of interest for the computation of the elliptic Fekete points. Let us define the unit
sphere in IR? by S? and for any configuration z := (1, x2,...,2n)" of points z; € S, the function

V() =[] llzi — 25l (I1.18.3)
i<j
We denote the value of - for which V' reaches its global maximum by Z = (Z1,...,Zx). The points
T1,T2,...,Zn are called the elliptic Fekete points of order N. For example, for N = 4, the points of
the optimal solution form a tetrahedron. But, in case of 8 points, intuition fails; the elliptic Fekete
points do not form a cube in this case. A cube where, for example, the upper plane is rotated over 45°
with respect to the bottom plane, gives already a larger value of V. It turns out (see e.g. [Par95]) that
7 is difficult to compute as solution of a global optimization problem. For reasons that will become
clear later, we differentiate log(V') with respect to zj and apply the method of Lagrange multipliers,
to see that z fulfills R
Velog(V(@) |y = 5= Y b o = (., (IL18.4)
2 e — 31
where the (; are Lagrange multipliers.

We now discuss the Fekete points from another point of view. Consider on §? a number of N
particles, on which two forces are invoked: a repulsive force, by which the particles will start to move
away from each other, and an adhesion force, by which the particles will reach a stationary state after
a certain period of time.
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We denote the position in Cartesian coordinates of particle ¢ at time ¢ by p;(¢) and the configuration
of N points at time ¢ by p(t) = (pi(t),...,pn~(t))T. The stationary configuration is assumed to be
obtained at ¢ = tg, and will be denoted by p := (p1, pa, .. .,Dn), where P; := p;(stat). The repulsive

force on particle 7 caused by particle j is defined by
- _ _bi—Dj
P e e
T e = wills

Note that the choice v = 3 can be interpreted as an electrical force working on particles with unit
charge. The adhesion force working on particle i is denoted by A; and given by

Al‘ = —Qq;.

Here, ¢ is the velocity vector and « is valued 0.5.
We can compute the configuration of the particles as function of time, given that the particles
cannot leave the unit sphere, as solution of the DAE system

Po= q (I1.18.5)
¢ = gp,0) +G (P)A, (I1.18.6)
0 = ¢(p), (I1.18.7)

where G = 0¢/0p and A € IRYN. The function ¢ : R*N — IR™ represents the constraint, which states
that the particles remain on the unit sphere:
$i(p) =P}y + 0o +1is — 1.
The function g : IRV — IR3®" is given by g = (¢;), i = 1,..., N, where
Q) =Y Fy(p) + Ail9)-
J#i

The term GT(p)A in (I1.18.6) represents the normal force which keeps the particle on S2.
Since we know that the speed of the final configuration at ¢ = tga: is 0, we can substitute ¢ = 0
and p = p in formula (II.18.6), thus arriving at

0=>_ F;;(p)+G (A
J#i

which is equal to 5
Z le ||” = —2\:D; - (I1.18.8)
(2

Comparing (11.18.4) and (I1.18.8) tells us that computing p for v = 2 gives the local optima of the
function V in (I1.18.3). In | ], it is showed that computing p by solving the system (I1.18.5)—
(I1.18.7) and then substituting 2 = pin (I1.18.3), results in values of V' that are very competitive with
those obtained by global optimization packages. For more details on elliptic Fekete points, we refer

to | ] and | ]
The DAE system mentioned before is of index 3. To arrive at a more stable formulation of the
problem, we stabilize the constraint (see | , D- 153]) by replacing (I1.18.5) by

P =q+G (), (I1.18.9)
where p € RY, and appending the differentiated constraint
0= G(p)g. (11.18.10)
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TABLE 11.18.1: Reference solution at the end of the integration interval.

—0.4070263380333202
0.3463758772791802
0.8451942450030429

(1) y( 0.7100577833343567
(2) y(
3) y(
(4) 0.0775293475252155 || y(
(5) (
(6) y(

)

) | 0.1212948055586120

) | 0.6936177005172217

0) | 0.2348267744557627
—0.2628662719972299 1
0.9617122871829146 2

) | 0.7449277976923311
) | 0.6244509285956391

e e

The system (I1.18.9), (I1.18.6), (I1.18.7), (II.18.10) is now of index 2; the variables p and ¢ are of index
1, the variables A and p of index 2. We cast the system in the form (I1.18.1) by setting y = (p,q, A\, p) "
and f(y) = f(p,q, A\, 1) = (¢ + G, g+ GT X\, 6,Gq)", where p; is in Cartesian coordinates.

The choice for the initial configuration as defined in §18.2 is a rough attempt to spread out the
points over the sphere. To arrive at a consistent set of initial values we choose ¢(0) = 0, yielding

1#(0) = 0 and ¢}(0) = (2p;(0), ¢;(0)) = 0. Consequently,

1(0) = (2pi(0), ¢;(0))
= (2pi(0), g:(p(0), q(0)) + 2X;(0)pi(0)).

Requiring ¢} (0) = 0 gives

(pi(0), gi(p(0), ¢(0))) 1
Ai(0) = — = —5{pi(0), 9:(p(0),¢(0))).
() = ~ 2GR — 04 (0).:(4(0). 4(0))
The initial derivative vector y{ can be chosen equal to f(yo). For N < 20, tsay < 1000, therefore we
chose tena = 1000.
In Figure I1.18.1 the final configuration for 20 points is plotted.

18.4 Numerical solution of the problem

All the tests concern the case with NV = 20. Tables II.18.1-11.18.2 and Figures I1.18.2-I1.18.6 present
the reference solution at the end of the integration interval (first 12 components), the run character-
istics, the behavior of the first 6 solution components over the interval [0,20] and the work-precision
diagrams, respectively. In computing the scd values, only the first sixty components were consid-
ered, since they refer to the position of the particles. The reference solution was computed using
RADATUS, rtol = 1072, atol = 107!, and h0 = 107!2. For the work-precision diagrams, we used:
rtol = 10-G+7m/16) = 0,1,...,64; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE,
MEBDFI, RADAU and RADAUS.
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TABLE I1.18.2: Run characteristics.
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FIGURE 11.18.2: Behavior of the solution over the integration interval.
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F1Gure 11.18.3: Work-precision diagram (scd versus CPU-time).
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F1Gure 11.18.4: Work-precision diagram (scd versus CPU-time).
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Ficure 11.18.5: Work-precision diagram (mescd versus CPU-time).
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FiGURE 11.18.6: Work-precision diagram (mescd versus CPU-time).
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