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19 Slider Crank

19.1 General Information

This problem was contributed by Bernd Simeon, March 1998. The slider crank shows some typical
properties of simulation problems in exible multibody systems, i.e., constrained mechanical systems
which include both rigid and elastic bodies. It is also an example of a sti� mechanical system since it
features large sti�ness terms in the right hand side. Accordingly, there are some fast variables with
high frequency oscillations.

This problem is originally described by a second order system of di�erential-algebraic equations
(DAEs), but transformed to �rst order and semi-explicit system of dimension 24. The index of the
problem is originally 3, but an index 1 and index 2 formulation are supplied as well. By default, the
subroutines provide the index 2 formulation.

Comments to simeon@ma.tum.de.
The software part of the problem is in the �le crank.f available at [MM08].

19.2 Mathematical description of the problem

The original problem has the form

M(p; q)

�
�p
�q

�
= f(p; _p; q; _q)�G(p; q)T�; (II.19.1)

0 = g(p; q) + r(t);

where 0 � t � 0:1, p 2 IR3, q 2 IR4, � 2 IR3, M : IR7 ! IR7 � IR7, f : IR14 ! IR7, g : IR7 ! IR3,
r : IR ! IR3, and G = @g=@(p; q). The matrix M(p; q) is symmetric positive semi-de�nite and rank
M(p; q) is 3, which implies that the DAE (II.19.1) is of index 3. For the index 2 formulation, the
position constraints are replaced by the velocity constraints

0 =
d

dt

�
g(p; q) + r(t)

�
= G(p; q)

�
_p
_q

�
+ _r(t): (II.19.2)

Additionally, the system is transformed to �rst order and semi explicit form�
_p
_q

�
=

�
vp
vq

�
;�

_vp
_vq

�
=

�
ap
aq

�
; (II.19.3)

0 = M(p; q)

�
ap
aq

�
� f(p; vp; q; vq) +G(p; q)T� ;

0 = G(p; q)

�
vp
vq

�
+ _r(t) ;

which increases the dimension of the problem to 24. If we de�ne y := (p; q; vp; vq; ap; aq; �)
T, then the

consistent values are given by y(0) := y0 and y0(0) := y00. The components of y0 are zero, except for

http://www.dm.uniba.it/~testset/src/problems/crank.f
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y0;3 0:450016933 �100

y0;6 0:103339863 �10�4

y0;7 0:169327969 �10�4

y0;8 0:150000000 �103

y0;9 �0:7499576703969453 �102

y0;10 �0:2689386719979040 �10�5

y0;11 0:4448961125815990 �100

y0;12 0:4634339319238670 �10�2

y0;13 �0:1785910760000550 �10�5

y0;14 �0:2689386719979040 �10�5

y0;16 �1:344541576709835 �10�3

y0;17 �5:062194924490193 �103

y0;18 �6:829725665986310 �10�5

y0;19 1:813207639590617 �10�20

y0;20 �4:268463266810281 �100

y0;21 2:098339029337557 �10�1

y0;22 �6:552727150584648 �10�8

y0;23 3:824589509350831 �102

y0;24 �4:635908708561371 �10�9

The �rst 14 components of y00 read y00;i = y0;i+7, i = 1; : : : ; 14; the last 10 are zero.
For the index 2 formulation, the index of the variables p, q, vp and vq equals 1 and that of ap,

aq and � equals 2. The equations are given in detail in the next subsections, in which already some
references to the origin of the problem, treated in x19.3, are given.

19.2.1 Equations of motion

The position or gross motion coordinates p are

p :=

0
@ �1

�2
x3

1
A crank angle

connecting rod angle
sliding block displacement

The deformation coordinates q (of the elastic connecting rod, see below) are

q :=

0
BB@

q1
q2
q3
q4

1
CCA

�rst lateral mode sin(�x=l2)
second lateral mode sin(2�x=l2)
longitudinal displacement midpoint
longitudinal displacement endpoint

The mass matrix M reads

M(p; q) =

 
Mr(p) +Me(p; q) C(p; q)T

C(p; q) M�

!

with rigid motion mass matrix

Mr(p) =

0
@ J1 +m2l

2
1 1=2 l1l2m2 cos(�1 � �2) 0

1=2 l1l2m2 cos(�1 � �2) J2 0
0 0 m3

1
A ;

coupling blocks

Me(p; q) =

0
@ 0 �l1(cos(�1 � �2)c

T
1 + sin(�1 � �2)c

T
2 )q 0

�l1(cos(�1 � �2)c
T
1 + sin(�1 � �2)c

T
2 )q qTM�q + 2�cT12q 0

0 0 0

1
A

and

C(p; q)T =

0
@ �l1(� sin(�1 � �2)c

T
1 + cos(�1 � �2)c

T
2 )

�cT21 + �qTB
0T

1
A ;
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and elastic body space discretization mass matrix

M� = � d h l2

0
BB@

1=2 0 0 0
0 1=2 0 0
0 0 8 1
0 0 1 2

1
CCA :

The forces are given by

f(p; _p; q; _q) =

 
fr(p; _p) + fe(p; _p; q; _q)

f�(p; _p; q; _q)� grad W�(q)�D� _q

!
;

where the rigid motion terms are collected in

fr(p; _p) =

0
BB@

�1=2 l1((m1 + 2m2) cos�1 + l2m2
_�22 sin(�1 � �2))

�1=2 l2m2 cos�2 + 1=2 l1l2m2
_�21 sin(�1 � �2)

0

1
CCA :

For the force term fe(p; _p; q; _q) we have0
BBBBBBB@

�l1 _�
2
2(� sin(�1 � �2)c

T
1 + cos(�1 � �2)c

T
2 )q � 2�l1 _�2(cos(�1 � �2)c

T
1 + sin(�1 � �2)c

T
2 ) _q

�l1 _�
2
1(sin(�1 � �2)c

T
1 � cos(�1 � �2)c

T
2 )q � 2� _�2c

T
12 _q � 2 _�2 _q

TM�q

�� _qTB _q � �(cos�2c
T
1 q � sin�2c

T
2 q)

0

1
CCCCCCCA

;

and for f�(p; _p; q; _q) the expression

_�22M�q + �
�
_�22c12 + l1 _�

2
1(cos(�1 � �2)c1 + sin(�1 � �2)c2) + 2 _�2B _q

�
� �

�
sin�2c1 + cos�2c2

�
:

The gradient of the elastic potential W�(q) in case of linear elasticity (which is the default) is
grad W�(q) = K�q with sti�ness matrix

K� = E dh =l2

0
BB@

�4=24(h=l2)
2 0 0 0

0 �42=3(h=l)2 0 0
0 0 16=3 �8=3
0 0 �8=3 7=3

1
CCA :

Alternatively, in case of the nonlinear beam model (IPAR(1) = 1, see below), it holds grad W�(q) =
K�q + k�(q),

k�(q) = 1=2�2E dh=l22

0
BB@

q1q4 � �q2(�4q3 + 2q4)
4q2q4 � �q1(�4q3 + 2q4)

4�q1q2
1=2q21 + 2q22 � 2�q1q2

1
CCA ; � = 80=(9�2):

The damping matrix D� is by default zero. The coupling matrices and vectors arising from the space
discretization read

B = d h l2

0
BB@

0 0 �16=�3 8=�3 � 1=�
0 0 0 1=(2�)

16=�3 0 0 0
1=� � 8=�3 �1=(2�) 0 0

1
CCA
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Figure II.19.1: The multibody system with crank, connecting rod, sliding block.

and

c1 = d h l2( 0; 0; 2=3; 1=6 )
T;

c2 = d h l2( 2=�; 0; 0; 0 )
T;

c12 = d h l22( 0; 0; 1=3; 1=6 )
T;

c21 = d h l22( 1=�; �1=(2�); 0; 0 )
T:

Finally, the position constraints 0 = g(p; q) + r(t) are given by

0 = l1 sin�1 + l2 sin�2 + q4 sin�2;

0 = x3 � l1 cos�1 � l2 cos�2 � q4 cos�2;

0 = �1 � 
t :

19.2.2 Parameters

For the simulation, the following data are used:
The bodies have lengths l1 = 0:15, l2 = 0:30[m].
The masses of the bodies are m1 = 0:36, m2 = 0:151104, m3 = 0:075552[kg].
The moments of inertia are J1 = 0:002727, J2 = 0:0045339259[kgm2].
The exible connecting rod has height and width h = d = 0:008[m].
The mass density � = 7870[kg=m3], and Young's modulus E = 2: � 1011[N=m2].
The gravity constant was set to zero since gravitation plays no role here,  = 0.
The angular velocity of the prescribed crank motion is 
 = 150[rad=s].

19.3 Origin of the problem

The planar slider crank mechanism, see Figure II.19.1, consists of a rigid crank (body 1), an elastic
connecting rod (body 2), a rigid sliding block (body 3) and two revolving and one translational joint.
Koppens [Kop89] and Jahnke [JPD93] investigated this example using an ODE model in minimum
coordinates. In [Sim96], an alternative DAE approach is introduced.
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The mathematical model outlined above is derived in two steps. First, the elastic connecting rod
is discretized in space. The geometry of the rod allows to apply an Euler-Bernoulli beam

u1(x; y) = w1(x)� yw02(x);

u2(x; y) = w2(x);

to describe the longitudinal and lateral displacements u1 and u2 of material point (x; y) in the body-
�xed coordinate system. For the longitudinal displacement w1 of the neutral �ber, a simple quadratic
model

w1(x)
:
= �2(�4q3 + 2q4) + �(4q3 � q4); � = x=l2;

is su�cient to show the basic e�ects. The lateral displacement w2 is approximated by the �rst two
sinus shape functions

w2(x)
:
= sin(��)q1 + sin(2��)q2 :

These functions satisfy the boundary conditions w1(0) = 0; w2(0) = 0; w2(l2) = 0. Accordingly, the
body-�xed coordinate system's origin is placed in (x; y) = (0; 0), and its x-axis passes through the
point (l2 + w1(x); 0).

As already mentioned in x19.2, we provide two versions of the problem. The �rst one (default)
assumes linear elasticity while the second takes the coupling of longitudinal and lateral displacements
in terms of k�(q) into account. Set IPAR(1) = 1 to switch to this nonlinear beam model. See below
for a comparison of the results.

In the second step, the equations of motion of the overall multibody system are assembled. Due
to the choice of �2 as gross motion coordinate, there is no constraint equation necessary to express
the revolving joint between crank and connecting rod. The revolving joint between sliding block and
connecting rod and the translational joint lead to two constraints that depend on the deformation
variable q4. The third constraint equation de�nes the crank motion using r(t) = (0; 0; �
t)T. Here,
other functions for the crank motion could also be prescribed.

The model described so far features no dissipation. Consequently, the solutions show a purely
oscillatory behavior. We supply also a nonzero damping matrix D� which can be activated by setting
IPAR(2) = 1. Then, 0:5 percent dissipation is included in the right hand side of the elastic connecting
rod.

In x19.4, we investigate the dynamic behavior of the slider crank model corresponding to the
nonlinear model without damping with the initial values listed in x19.2, which were calculated such
that the motion is almost smooth, using an asymptotic expansion technique [Sim97]. In Figure II.19.4
we see the behavior of the numerical solution for this setting of the model. A close look at these
plots reveals that both lateral displacements q1; q2 as well as longitudinal displacements q3; q4 still
show some small oscillations. The corresponding frequencies as solutions of the eigenvalue problem
!2M�q = K�q are

!1 = 1277; !2 = 5107; !3 = 6841; !4 = 24613 [rad=s] :

In particular, q3 and q4 are characterized by the relatively large frequency !4. Any explicit discretiza-
tion in time will need stepsizes smaller than the shortest period of oscillation, even for tracking a
smooth solution. On the other hand, the challenge for implicit methods is to be able to take larger
steps. In this simulation the gross motion coordinates p di�er only slightly from the motion of a
mechanism with rigid connecting rod.

The subroutines that describe the model o�er several possibilities to test other variants of the
model than those tested in x19.4. We now discuss some of them.

Oscillatory solution

We provide also a second set of initial values (subroutine init2) which lead to a strongly oscillatory
solution. Here, the initial deformation as well as the corresponding velocity were set to zero, q(0) =
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Figure II.19.2: Solution of slider crank for `rigid' initial values, i.e., deformation q(0) = vq(0) = 0.

Figure II.19.3: Left: Comparison of linear and nonlinear beam model. Right: Oscillatory solution with physical
damping.

vq(0) = 0, which is equivalent to consistent initial values on a rigid motion trajectory. Figure II.19.2
plots the behavior of q1, q2 and q4 for this setting. Both lateral and longitudinal modes oscillate now
with di�erent frequencies.

Nonlinear beam model and damping

The left and right plot in Figure II.19.3 show the e�ects of setting IPAR(1) = 1 and IPAR(2) = 1,
respectively. On the left, the di�erence between linear and nonlinear beam model is illustrated, with
initial values close to the smooth motion. In particular, the components q3 and q4 change if the
nonlinear model is employed. At points of maximum bending, the longitudinal displacement has now
much smaller minima. If we increase the crank's angular velocity, the resulting forces acting on the
connecting rod are much larger and we can then even observe how the sharp needles turn into a
singularity, the buckling phenomenon.

On the right of Figure II.19.3, the damping was activated by IPAR(2) = 1, with initial values on
a rigid motion trajectory (init2). Obviously, the oscillation shown in Figure II.19.2 on the right is
now slowly damped out.
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Table II.19.1: Failed runs.

solver m reason
MEBDFDAE 19; : : : ; 24 stepsize too small
MEBDFI 21; 22; 23; 24 stepsize too small
PSIDE-1 17; 18; : : : ; 24 iteration matrix singular
RADAU 24 core dump / overow in decomposition
RADAU5 24 core dump / overow in decomposition

Table II.19.2: Reference solution at the end of the integration interval.

y1 1:500000000000104 � 101

y2 �3:311734988256260 � 10�1

y3 1:697373328427860 � 10�1

y4 1:893192899613509 � 10�4

y5 2:375751249879174 � 10�5

y6 �5:323896770569702 � 10�6

y7 �8:363313279112129 � 10�6

y8 1:500000000000000 � 102

y9 6:025346755138369 � 101

y10 �8:753116326670527 � 100

y11 �3:005541400289738 � 10�2

y12 �5:500431812571696 � 10�3

y13 4:974111734266989 � 10�4

y14 1:105560003626645 � 10�3

y15 0
y16 6:488737541276957 � 103

y17 2:167938629509884 � 103

y18 3:391137060286523 � 101

y19 1:715134772216488 � 10�1

y20 �1:422449408912512 � 100

y21 1:003946428124810 � 100

y22 �6:232935833287916 � 101

y23 �1:637920993367306 � 102

y24 2:529857947066878 � 101

19.4 Numerical solution of the problem

The results presented here refer to index 2 formulation of the linear model without damping, using
the initial values corresponding to a smooth solution.

Tables II.19.2{II.19.3 and Figures II.19.4{II.19.8 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of some of the solution components over the
integration interval and the work-precision diagrams, respectively. In computing the scd values, only
the �rst seven and the last three components were taken into account, since they refer to the physically
important quantities. The reference solution was computed using MEBDFI with atol = 10�14 and
rtol = 10�14 and h0 = 10�12. For the work-precision diagrams, we used: rtol = 10�(4+m=4), m =
0; : : : ; 24; atol = rtol; h0 = 10�2 � rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU5 and
RADAU. The failed runs are in Table II.19.1; listed are the name of the solver that failed, for which
values of m this happened, and the reason for failing.

.

Remarks

� The slider crank is an example for a sti� mechanical system given in DAE form. See Lubich
[Lub93] for an investigation of such systems and the implications for numerical methods in the
ODE case.

� The nonlinear beam model leads to a higher computational e�ort but does not provoke con-
vergence failures of Newton's method in RADAU5, as might be expected in case of nonlinear
sti�ness terms.
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Table II.19.3: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 0:23 2:50 102 102 1762 102 102 0.0420
10�6 10�6 10�8 0:39 3:38 1155 1155 22548 1155 1155 0.5144
10�8 10�8 10�10 2:50 5:49 992 992 35662 992 992 0.7086

GAMD 10�4 10�4 10�6 0:23 2:28 60 60 1983 60 60 0.0342
10�6 10�6 10�8 �0:16 2:83 534 527 25206 527 534 0.4089
10�8 10�8 10�10 1:70 4:69 650 650 46109 650 650 0.7271

MEBDFI 10�4 10�4 10�6 0:22 1:49 250 242 1593 28 28 0.0176
10�6 10�6 10�8 0:03 3:03 3328 3324 15099 170 170 0.2011
10�8 10�8 10�10 2:72 5:71 6316 6315 28395 313 313 0.3845

PSIDE-1 10�4 10�4 �0:05 0:93 45 41 858 29 180 0.0234
10�6 10�6 0:16 2:43 259 235 5020 147 888 0.1298
10�8 10�8 1:66 4:66 1639 1445 31526 54 2324 0.6412

RADAU 10�4 10�4 10�6 0:20 1:90 104 92 717 89 104 0.0224
10�6 10�6 10�8 0:14 2:89 132 131 3367 123 131 0.0654
10�8 10�8 10�10 1:65 4:65 420 419 10589 397 414 0.2089

� As an alternative to sti� solvers, it is still possible to apply methods based on explicit dis-
cretizations, e.g., half-explicit or projection methods for constrained mechanical systems. The
code MDOP5 [Sim95], a projection method based on DOPRI5, uses 2260 integration steps to
solve this problem in the default setting, with atol = 10�6 and rtol = 10�5, and initial values
close to the smooth motion. Thus, the sti�ness is no that severe in case of this carefully chosen
one-dimensional elastic body model.

� There is also an extended version of the slider crank with a two-dimensional FE grid for the
connecting rod. There, explicit methods do not work any longer. An animation of the system
motion can be found at http://www.mathematik.tu-darmstadt.de/~ simeon/ .
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Figure II.19.4: Behavior of the ith solution component; i 2 f2; 3; : : : ; 7; 22; 23; 24g.
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Figure II.19.5: Work-precision diagram (scd versus CPU-time).
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Figure II.19.6: Work-precision diagram (scd versus CPU-time).
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Figure II.19.7: Work-precision diagram (mescd versus CPU-time).
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Figure II.19.8: Work-precision diagram (mescd versus CPU-time).
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