DAE - The car axis problem II-17-1

17 The car axis problem

17.1 General information

The problem is a stiff DAE of index 3, consisting of 8 differential and 2 algebraic equations. It has

been taken from |

of initial conditions. The software part of the problem is in the file caraxis.f available at |

17.2 Mathematical description of the problem

The problem is of the form

]. Since not all initial conditions were given, we have chosen a counsistent set

]

i g, (11.17.1)
K¢ = f(t,p,N), pqgelR) XecR? 0<t<3, (I1.17.2)
0 = otp), (11.17.3)

Po, 4(0) = qo, p'(0) = qo, ¢'(0) = g5, A(0) = Ao and X'(0) = Ap.

with initial conditions p(0) =
2M T, where I4 is the 4 x 4 identity matrix. The function f : ]R7 — R is

The matrix K reads *5-

given by
T
(Lo — Ll)fll +Aizp+2ho () — )
oM
(Lo— L0 g2y —yr) —7 5
L 2
f(tvp’ )‘) = Ty — Tp
(LO — Lr) 7 —2)\2 (ZL’[ — .TIT)
g M
(Lo — L) =2 —2x(y — )~
L, 2
Here, (z;, 91, Z,,yr)" := p, and L; and L, are given by
Vai+y?r and  (ze —a)? + (yr — )2
Furthermore, the functions x;(t) and y;(¢) are defined by
zp(t) = \/L? —yi(t), (I1.17.4)
yp(t) = hsin(wt). (I1.17.5)
The function ¢ : IR® — IR? reads
1Ty + YrYn
t,p) = .
oon = (o )
The constants are listed below.
L = 1]le€ 1072|h = 107w = 10
Ly = 1/2| M 0(r = x/5
Consistent initial values are
0 —1/2
1/2 0 2
Po = 1/ y  Go = ~1/2 M Zf(o PosXo)s  Po = o, )‘0:>‘6:(0a0)T'
1/2 0

The index of the variables p, ¢ and X is 1, 2 and 3, respectively.


http://www.dm.uniba.it/~testset/src/problems/caraxis.f
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17.3 Origin of the problem

The car axis problem is an example of a rather simple multibody system, in which the behavior of a
car axis on a bumpy road is modeled by a set of differential-algebraic equations.
A simplification of the car is depicted in Figure 11.17.1. We model the situation that the left wheel

(T1,m1)

Fiqure 11.17.1: Modelnn of the car azis.

at the origin (0,0) rolls on a flat surface and the right wheel at coordinates (xy,y;) rolls over a hill of
height h every 7 seconds®. This means that y; varies over time according to (I1.17.5). The length of
the axis, denoted by L, remains constant over time, which means that z; has to fulfill (I1.17.4). Two
springs carry over the movement of the axis between the wheels to the chassis of the car, which is
represented by the bar (z;,y;)—(z,,y,) of mass M. The two springs are assumed to be massless and
have Hooke’s constant 1/€> and length Ly at rest.

There are two position constraints. Firstly, the distance between (z;,y;) and (x,,y,) must remain
constantly L and secondly, for simplicity of the model, we assume that the left spring remains orthog-
onal to the axis. If we identify p with the vector (z,y;, ., y,)T, then we see that Equation (I1.17.3)
reflects these constraints.

Using Lagrangian mechanics, the equations of motions for the car axis are given by
M d3%p
— = =Fu+G"\+F,. I1.17.6
o T aTE AT ( )

Here, GG is the 2 x 4 Jacobian matrix of the function ¢ with respect to p and A is the 2-dimensional
vector containing the so-called Lagrange multipliers. The factor M/2 is explained by the fact that
the mass M is divided equally over (x;,y;) and (z,,¥,). The force F represents the spring forces:

Fy = —(cos(ay) Fy,sin(ay) Fy, cos(a, ) F, sin(ar)Fr)T,

2in the source fortran file the variable r stands for h
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where F; and F,. are the forces induced by the left and right spring, respectively, according to Hooke’s
law:

F = (L —Ly)/e,
F. = (L,—Ly)/é.

Here, L; and L, are the actual lengths of the left and right spring, respectively:
Ll = xlz + y[27
Lo = (& — )+ (yr — 1)

Furthermore, ¢ and a, are the angles of the left and right spring with respect to the horizontal axis
of the coordinate system:

oy = arctan(y;/z;),

ar = arctan((y, — yp)/(zr — 1))

Finally, F, represents the gravitational force
M
F, =—(0,1,0, 1)T79.

The original formulation | ] sets g = 1.
We rewrite (I1.17.6) as a system of first order differential equations by introducing the velocity
vector ¢, so that we obtain the first order differential equations (I1.17.1) and

M dq T
—— =F G A+ F;,. 11.17.7
2 @ H+ + Fy ( )
Setting f = Fiy + GTA + F,, it is easily checked that multiplying (I1.17.7) by & yields (I1.17.2).

To arrive at a consistent set of initial values pg, go and A, we have to solve the system of equations
consisting of the constraint

¢(to, po) = 0, (I1.17.8)

and the 1 up to k — 1 times differentiated constraint (I1.17.8), where k is the highest variable index.

To facilitate notation, we introduce 5 := (¢,p")" and its derivative § := & = (1,¢")T. The Jacobian

of ¢ with respect to p will be denoted by G. Here, k = 3, yielding the additional conditions
G (Bo)do = 0 (I1.17.9)
and 3
b53(P0) (G0, do) + G(Po)do = 0,

where ¢35 denotes the second derivative of ¢ with respect to p. Using (IL.17.6) and the fact that the
first component of ¢, vanishes, the latter condition equals

300 s ) + G o) (Fi(po) + G (o) o + Fy(pn) = 0. (IL.17.10)



II-17-4 DAE - The car axis problem

The equations (I1.17.8)—(11.17.10) are solved for

x. =L,
=0,
Yr = Y1 = Lo,
T =1 = _Lo2m ,
L
2
Y, = ri;M(?)\l = A2),

L?r L [—8X+2)
= (2N — A\) £ = —————,
i 27T£2hM( 2 ) eV M

Choosing Ay = Ay = 0, we arrive at the initial conditions listed in §17.2,

TABLE 11.17.1: Reference solution at the end of the integration interval.

1 0.493455784275402809122 - 10~ || ye 0.744686658723778553466 - 10~2

Y2 0.496989460230171153861 Y7 0.175568157537232222276 - 10—+
Y3 0.104174252488542151681 - 10 ys 0.770341043779251976443
Y4 0.373911027265361256927 yo | —0.473688659084893324729 - 102

ys | —0.770583684040972357970 - 10~ || y19 | —0.110468033125734368808 - 102

17.4 Numerical solution of the problem

Tables 11.17.1-11.17.2 and Figures I1.17.2-11.17.3 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of some solution components over the in-
tegration interval and the work-precision diagrams, respectively. The reference solution was com-
puted on using quadruple precision GAMD on an Alphaserver DS20E, with a 667 MHz EV67 pro-
cessor. atol = rtol = hy = 1072*. For the work-precision diagrams, we used: rtol = 10~ (*4+m/4),
m = 0,1,...,24; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and
RADAUS.
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TABLE I1.17.2: Run characteristics.
solver rtol atol hO mescd scd  steps accept #f  #Jac #LU CPU
BIMD 10—4 10— 10~ 2.19 0.34 71 71 1693 71 71 0.0088
10-7 107" 10~7 5.47 3.34 138 138 4511 138 138  0.0224
10~10 10710 10-10 8.01 5.35 235 235 9669 235 235 0.0488
GAMD 1074 1074 1074 1.98 0.39 39 39 2169 39 39 0.0088
1007 1077 107 4.82 2.64 98 98 7167 98 98 0.0293
1079 107'9 10710 6.50 3.84 179 179 18771 179 179  0.0742
MEBDFI 10~* 10—* 10~* 0.88 —0.23 280 278 1246 27 27 0.0059
10-7 1077 10~7 4.65 3.34 650 648 2797 47 47  0.0137
101 10710 10-10 4.21 2.08 1393 1391 5624 85 85 0.0264
PSIDE-1 10¢ 1074 0.83 —0.28 55 54 1403 42 220 0.0098
107 1077 4.41 2.27 179 172 4103 83 464  0.0273
10~ 1010 7.25 4.86 625 612 13751 115 964 0.0869
RADAU 10~* 10—* 10~* 1.34 0.19 98 97 850 95 98 0.0039
10°7 1077 107 3.73 2.51 289 288 2559 282 288 0.0127
101 10710 10-10 5.99 4.22 179 178 4281 169 179 0.0166
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F1Gure 11.17.2: Behavior of (x1,y;) and (z,,yr) over the integration interval.
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Car Axisproblam
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F1Gure 11.17.3: Work-precision diagram (scd versus CPU-time).
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F1Gure 11.17.4: Work-precision diagram (scd versus CPU-time).
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Car Axisproblam

II-17-9

0.089
oneg -

oar

one

ons -

on4

ons

ong

wiok [CPU-lime in saconds)

oM by
ome -

0.oos | o

0007

0.o0E -

00029 -

T
BIMD ——
GAMD
MEEDFI -4
PSIDE —a—
RADAL

1 z 3 4 & 33
preciEion [ mescd)

Ficureg 11.17.5: Work-precision diagram (mescd versus CPU-time).
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Car Axisproblam
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FIGURE 11.17.6: Work-precision diagram (mescd versus CPU-time).



	The car axis problem
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem


