17The car axis problem

17.1General information

The problem is a stiff DAE of index 3, consisting of 8 differential and 2 algebraic equations. It has been taken from [Sch94]. Since not all initial conditions were given, we have chosen a consistent set of initial conditions. The software part of the problem is in the file caraxis.f available at [MM08].

17.2Mathematical description of the problem

The problem is of the form

$$p' = q, \tag{II.17.1}$$

$$Kq' = f(t, p, \lambda), \qquad p, q \in \mathbb{R}^4, \quad \lambda \in \mathbb{R}^2, \quad 0 \le t \le 3,$$
(II.17.2)

$$0 = \phi(t, p), \qquad (\text{II.17.3})$$

with initial conditions $p(0) = p_0$, $q(0) = q_0$, $p'(0) = q_0$, $q'(0) = q'_0$, $\lambda(0) = \lambda_0$ and $\lambda'(0) = \lambda'_0$. The matrix K reads $\varepsilon^2 \frac{M}{2} I_4$, where I_4 is the 4 × 4 identity matrix. The function $f : \mathbb{R}^7 \to \mathbb{R}^4$ is given by 1 x_1

$$f(t, p, \lambda) = \begin{pmatrix} (L_0 - L_l) \frac{x_l}{L_l} & +\lambda_1 x_b + 2\lambda_2 (x_l - x_r) \\ (L_0 - L_l) \frac{y_l}{L_l} & +\lambda_1 y_b + 2\lambda_2 (y_l - y_r) - \varepsilon^2 \frac{M}{2} \\ (L_0 - L_r) \frac{x_r - x_b}{L_r} & -2\lambda_2 (x_l - x_r) \\ (L_0 - L_r) \frac{y_r - y_b}{L_r} & -2\lambda_2 (y_l - y_r) - \varepsilon^2 \frac{M}{2} \end{pmatrix}$$

Here, $(x_l, y_l, x_r, y_r)^{\mathrm{T}} := p$, and L_l and L_r are given by

$$\sqrt{x_l^2 + y_l^2}$$
 and $\sqrt{(x_r - x_b)^2 + (y_r - y_b)^2}$.

Furthermore, the functions $x_b(t)$ and $y_b(t)$ are defined by

$$\begin{aligned} x_b(t) &= \sqrt{L^2 - y_b^2(t)}, \\ y_b(t) &= h \sin(\omega t). \end{aligned}$$
 (II.17.4)
(II.17.5)

The function
$$\phi : \mathbb{R}^5 \to \mathbb{R}^2$$
 reads

$$\phi(t,p) = \left(\begin{array}{c} x_l x_b + y_l y_b \\ (x_l - x_r)^2 + (y_l - y_r)^2 - L^2 \end{array}\right).$$

The constants are listed below.

Consistent initial values are

$$p_0 = \begin{pmatrix} 0\\ 1/2\\ 1\\ 1/2 \end{pmatrix}, \quad q_0 = \begin{pmatrix} -1/2\\ 0\\ -1/2\\ 0 \end{pmatrix}, \quad q'_0 = \frac{2}{M\varepsilon^2}f(0, p_0, \lambda_0), \quad p'_0 = q_0, \quad \lambda_0 = \lambda'_0 = (0, 0)^{\mathrm{T}}.$$

The index of the variables p, q and λ is 1, 2 and 3, respectively.

17.3 Origin of the problem

The car axis problem is an example of a rather simple multibody system, in which the behavior of a car axis on a bumpy road is modeled by a set of differential-algebraic equations.

A simplification of the car is depicted in Figure II.17.1. We model the situation that the left wheel

FIGURE II.17.1: Modelnn of the car axis.

at the origin (0,0) rolls on a flat surface and the right wheel at coordinates (x_b, y_b) rolls over a hill of height h every τ seconds². This means that y_b varies over time according to (II.17.5). The length of the axis, denoted by L, remains constant over time, which means that x_b has to fulfill (II.17.4). Two springs carry over the movement of the axis between the wheels to the chassis of the car, which is represented by the bar $(x_l, y_l)-(x_r, y_r)$ of mass M. The two springs are assumed to be massless and have Hooke's constant $1/\epsilon^2$ and length L_0 at rest.

There are two position constraints. Firstly, the distance between (x_l, y_l) and (x_r, y_r) must remain constantly L and secondly, for simplicity of the model, we assume that the left spring remains orthogonal to the axis. If we identify p with the vector $(x_l, y_l, x_r, y_r)^{\mathrm{T}}$, then we see that Equation (II.17.3) reflects these constraints.

Using Lagrangian mechanics, the equations of motions for the car axis are given by

$$\frac{M}{2}\frac{\mathrm{d}^2 p}{\mathrm{d}t^2} = F_{\mathrm{H}} + G^{\mathrm{T}}\lambda + F_{\mathrm{g}}.$$
(II.17.6)

Here, G is the 2 × 4 Jacobian matrix of the function ϕ with respect to p and λ is the 2-dimensional vector containing the so-called Lagrange multipliers. The factor M/2 is explained by the fact that the mass M is divided equally over (x_l, y_l) and (x_r, y_r) . The force $F_{\rm H}$ represents the spring forces:

$$F_{\rm H} = -(\cos(\alpha_l)F_l, \sin(\alpha_l)F_l, \cos(\alpha_r)F_r, \sin(\alpha_r)F_r)^{\rm T},$$

II-17-2

 $^{^2 \, {\}rm in}$ the source fortran file the variable r stands for h

where F_l and F_r are the forces induced by the left and right spring, respectively, according to Hooke's law:

$$F_l = (L_l - L_0)/\epsilon^2,$$

$$F_r = (L_r - L_0)/\epsilon^2.$$

Here, L_l and L_r are the actual lengths of the left and right spring, respectively:

$$L_{l} = \sqrt{x_{l}^{2} + y_{l}^{2}},$$

$$L_{r} = \sqrt{(x_{r} - x_{b})^{2} + (y_{r} - y_{b})^{2}}.$$

Furthermore, α_l and α_r are the angles of the left and right spring with respect to the horizontal axis of the coordinate system:

$$\alpha_l = \arctan(y_l/x_l),$$

$$\alpha_r = \arctan((y_r - y_b)/(x_r - x_b)).$$

Finally, F_g represents the gravitational force

$$F_g = -(0, 1, 0, 1)^{\mathrm{T}} \frac{M}{2} g.$$

The original formulation [Sch94] sets g = 1.

We rewrite (II.17.6) as a system of first order differential equations by introducing the velocity vector q, so that we obtain the first order differential equations (II.17.1) and

$$\frac{M}{2}\frac{\mathrm{d}q}{\mathrm{d}t} = F_{\mathrm{H}} + G^{\mathrm{T}}\lambda + F_{\mathrm{g}}.$$
(II.17.7)

Setting $f = F_{\rm H} + G^{\rm T}\lambda + F_g$, it is easily checked that multiplying (II.17.7) by ε^2 yields (II.17.2).

To arrive at a consistent set of initial values p_0 , q_0 and λ_0 , we have to solve the system of equations consisting of the constraint

$$\phi(t_0, p_0) = 0, \tag{II.17.8}$$

and the 1 up to k-1 times differentiated constraint (II.17.8), where k is the highest variable index. To facilitate notation, we introduce $\tilde{p} := (t, p^{\mathrm{T}})^{\mathrm{T}}$ and its derivative $\tilde{q} := \frac{d\tilde{p}}{dt} = (1, q^{\mathrm{T}})^{\mathrm{T}}$. The Jacobian of ϕ with respect to \tilde{p} will be denoted by \tilde{G} . Here, k = 3, yielding the additional conditions

$$\ddot{G}(\tilde{p}_0)\tilde{q}_0 = 0$$
 (II.17.9)

and

$$\phi_{\bar{p}\bar{p}}(\tilde{p}_0)(\tilde{q}_0,\tilde{q}_0) + \tilde{G}(\tilde{p}_0)\tilde{q}'_0 = 0,$$

where $\phi_{\bar{p}\bar{p}}$ denotes the second derivative of ϕ with respect to \tilde{p} . Using (II.17.6) and the fact that the first component of \tilde{q}'_0 vanishes, the latter condition equals

$$\phi_{\bar{p}\bar{p}}(\tilde{p}_0)(\tilde{q}_0,\tilde{q}_0) + \frac{2}{M}G(p_0)\left(F_{\rm H}(p_0) + G^{\rm T}(p_0)\lambda_0 + F_{\rm g}(p_0)\right) = 0.$$
(II.17.10)

The equations (II.17.8) - (II.17.10) are solved for

$$\begin{aligned} x_r &= L, \\ x_l &= 0, \\ y_r &= y_l = L_0, \\ x'_r &= x'_l = -\frac{L_0}{L} \frac{2\pi}{\tau} h, \\ y'_r &= \frac{L^2 \tau}{2\pi \hbar \varepsilon^2 M} (2\lambda_1 - \lambda_2), \\ y'_l &= \frac{L^2 \tau}{2\pi \varepsilon^2 \hbar M} (2\lambda_2 - \lambda_1) \pm \frac{L}{\varepsilon} \sqrt{\frac{-8\lambda_2 + 2\lambda_1}{M}}. \end{aligned}$$

Choosing $\lambda_1 = \lambda_2 = 0$, we arrive at the initial conditions listed in §17.2,

TABLE II.17.1: Reference solution at the end of the integration interval.

y_1	$0.493455784275402809122 \cdot 10^{-1}$	y_6	$0.744686658723778553466 \cdot 10^{-2}$
y_2	0.496989460230171153861	y_7	$0.17556815753723222276 \cdot 10^{-1}$
y_3	$0.104174252488542151681\cdot 10$	y_8	0.770341043779251976443
y_4	0.373911027265361256927	y_9	$-0.473688659084893324729 \cdot 10^{-2}$
y_5	$-0.770583684040972357970 \cdot 10^{-1}$	y_{10}	$-0.110468033125734368808 \cdot 10^{-2}$

17.4 Numerical solution of the problem

Tables II.17.1–II.17.2 and Figures II.17.2–II.17.3 present the reference solution at the end of the integration interval, the run characteristics, the behavior of some solution components over the integration interval and the work-precision diagrams, respectively. The reference solution was computed on using quadruple precision GAMD on an Alphaserver DS20E, with a 667 MHz EV67 processor. atol = rtol = $h_0 = 10^{-24}$. For the work-precision diagrams, we used: rtol = $10^{-(4+m/4)}$, $m = 0, 1, \ldots, 24$; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

References

- [MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4. Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008. Available at http://www.dm.uniba.it/~testset.
- [Sch94] S. Schneider. Intégration de systèmes d'équations différentielles raides et différentiellesalgébriques par des méthodes de collocations et méthodes générales linéaires. PhD thesis, Université de Genève, 1994.

TABLE II.17.2: Run characteristics.

solver	rtol	atol	h0	mescd	scd	steps	accept	#f	#Jac	#LU	CPU
BIMD	10^{-4}	10^{-4}	10^{-4}	2.19	0.34	71	71	1693	71	71	0.0088
	10^{-7}	10^{-7}	10^{-7}	5.47	3.34	138	138	4511	138	138	0.0224
	10^{-10}	10^{-10}	10^{-10}	8.01	5.35	235	235	9669	235	235	0.0488
GAMD	10^{-4}	10^{-4}	10^{-4}	1.98	0.39	39	39	2169	39	39	0.0088
	10^{-7}	10^{-7}	10^{-7}	4.82	2.64	98	98	7167	98	98	0.0293
	10^{-10}	10^{-10}	10^{-10}	6.50	3.84	179	179	18771	179	179	0.0742
MEBDFI	10^{-4}	10^{-4}	10^{-4}	0.88	-0.23	280	278	1246	27	27	0.0059
	10^{-7}	10^{-7}	10^{-7}	4.65	3.34	650	648	2797	47	47	0.0137
	10^{-10}	10^{-10}	10^{-10}	4.21	2.08	1393	1391	5624	85	85	0.0264
PSIDE-1	10^{-4}	10^{-4}		0.83	-0.28	55	54	1403	42	220	0.0098
	10^{-7}	10^{-7}		4.41	2.27	179	172	4103	83	464	0.0273
	10^{-10}	10^{-10}		7.25	4.86	625	612	13751	115	964	0.0869
RADAU	10^{-4}	10^{-4}	10^{-4}	1.34	0.19	98	97	850	95	98	0.0039
	10^{-7}	10^{-7}	10^{-7}	3.73	2.51	289	288	2559	282	288	0.0127
	10^{-10}	10^{-10}	10^{-10}	5.99	4.22	179	178	4281	169	179	0.0166

FIGURE II.17.2: Behavior of (x_l, y_l) and (x_r, y_r) over the integration interval.

FIGURE II.17.3: Work-precision diagram (scd versus CPU-time).

FIGURE II.17.4: Work-precision diagram (scd versus CPU-time).

FIGURE II.17.5: Work-precision diagram (mescd versus CPU-time).

FIGURE II.17.6: Work-precision diagram (mescd versus CPU-time).