17 The car axis problem

17.1 General information

The problem is a stiff DAE of index 3 , consisting of 8 differential and 2 algebraic equations. It has been taken from [Sch94]. Since not all initial conditions were given, we have chosen a consistent set of initial conditions. The software part of the problem is in the file caraxis.f available at [MM08].

17.2 Mathematical description of the problem

The problem is of the form

$$
\begin{align*}
p^{\prime} & =q \tag{II.17.1}\\
K q^{\prime} & =f(t, p, \lambda), \quad p, q \in \mathbb{R}^{4}, \quad \lambda \in \mathbb{R}^{2}, \quad 0 \leq t \leq 3 \tag{II.17.2}\\
0 & =\phi(t, p) \tag{II.17.3}
\end{align*}
$$

with initial conditions $p(0)=p_{0}, q(0)=q_{0}, p^{\prime}(0)=q_{0}, q^{\prime}(0)=q_{0}^{\prime}, \lambda(0)=\lambda_{0}$ and $\lambda^{\prime}(0)=\lambda_{0}^{\prime}$.
The matrix K reads $\varepsilon^{2} \frac{M}{2} I_{4}$, where I_{4} is the 4×4 identity matrix. The function $f: \mathbb{R}^{7} \rightarrow \mathbb{R}^{4}$ is given by

$$
f(t, p, \lambda)=\left(\begin{array}{ll}
\left(L_{0}-L_{l}\right) \frac{x_{l}}{L_{l}} & +\lambda_{1} x_{b}+2 \lambda_{2}\left(x_{l}-x_{r}\right) \\
\left(L_{0}-L_{l}\right) \frac{y_{l}}{L_{l}} & +\lambda_{1} y_{b}+2 \lambda_{2}\left(y_{l}-y_{r}\right)-\varepsilon^{2} \frac{M}{2} \\
\left(L_{0}-L_{r}\right) \frac{x_{r}-x_{b}}{L_{r}} & -2 \lambda_{2}\left(x_{l}-x_{r}\right) \\
\left(L_{0}-L_{r}\right) \frac{y_{r}-y_{b}}{L_{r}} & -2 \lambda_{2}\left(y_{l}-y_{r}\right)-\varepsilon^{2} \frac{M}{2}
\end{array}\right)
$$

Here, $\left(x_{l}, y_{l}, x_{r}, y_{r}\right)^{\mathrm{T}}:=p$, and L_{l} and L_{r} are given by

$$
\sqrt{x_{l}^{2}+y_{l}^{2}} \quad \text { and } \quad \sqrt{\left(x_{r}-x_{b}\right)^{2}+\left(y_{r}-y_{b}\right)^{2}}
$$

Furthermore, the functions $x_{b}(t)$ and $y_{b}(t)$ are defined by

$$
\begin{align*}
x_{b}(t) & =\sqrt{L^{2}-y_{b}^{2}(t)} \tag{II.17.4}\\
y_{b}(t) & =h \sin (\omega t) \tag{II.17.5}
\end{align*}
$$

The function $\phi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ reads

$$
\phi(t, p)=\binom{x_{l} x_{b}+y_{l} y_{b}}{\left(x_{l}-x_{r}\right)^{2}+\left(y_{l}-y_{r}\right)^{2}-L^{2}}
$$

The constants are listed below.

$$
\begin{array}{|lrr|llr|ll|ll|}
\hline L & = & 1 & \epsilon & = & 10^{-2} & h & = & 10^{-1} & \omega=10 \\
L_{0} & = & 1 / 2 & M & = & 10 & \tau & = & \pi / 5 & \\
\hline
\end{array}
$$

Consistent initial values are

$$
p_{0}=\left(\begin{array}{l}
0 \\
1 / 2 \\
1 \\
1 / 2
\end{array}\right), \quad q_{0}=\left(\begin{array}{l}
-1 / 2 \\
0 \\
-1 / 2 \\
0
\end{array}\right), \quad q_{0}^{\prime}=\frac{2}{M \varepsilon^{2}} f\left(0, p_{0}, \lambda_{0}\right), \quad p_{0}^{\prime}=q_{0}, \quad \lambda_{0}=\lambda_{0}^{\prime}=(0,0)^{\mathrm{T}}
$$

The index of the variables p, q and λ is 1,2 and 3 , respectively.

17.3 Origin of the problem

The car axis problem is an example of a rather simple multibody system, in which the behavior of a car axis on a bumpy road is modeled by a set of differential-algebraic equations.

A simplification of the car is depicted in Figure II.17.1. We model the situation that the left wheel

Figure II.17.1: Modelnn of the car axis.
at the origin $(0,0)$ rolls on a flat surface and the right wheel at coordinates $\left(x_{b}, y_{b}\right)$ rolls over a hill of height h every τ seconds ${ }^{2}$. This means that y_{b} varies over time according to (II.17.5). The length of the axis, denoted by L, remains constant over time, which means that x_{b} has to fulfill (II.17.4). Two springs carry over the movement of the axis between the wheels to the chassis of the car, which is represented by the bar $\left(x_{l}, y_{l}\right)-\left(x_{r}, y_{r}\right)$ of mass M. The two springs are assumed to be massless and have Hooke's constant $1 / \epsilon^{2}$ and length L_{0} at rest.

There are two position constraints. Firstly, the distance between (x_{l}, y_{l}) and (x_{r}, y_{r}) must remain constantly L and secondly, for simplicity of the model, we assume that the left spring remains orthogonal to the axis. If we identify p with the vector $\left(x_{l}, y_{l}, x_{r}, y_{r}\right)^{\mathrm{T}}$, then we see that Equation (II.17.3) reflects these constraints.

Using Lagrangian mechanics, the equations of motions for the car axis are given by

$$
\begin{equation*}
\frac{M}{2} \frac{\mathrm{~d}^{2} p}{\mathrm{~d} t^{2}}=F_{\mathrm{H}}+G^{\mathrm{T}} \lambda+F_{\mathrm{g}} \tag{II.17.6}
\end{equation*}
$$

Here, G is the 2×4 Jacobian matrix of the function ϕ with respect to p and λ is the 2 -dimensional vector containing the so-called Lagrange multipliers. The factor $M / 2$ is explained by the fact that the mass M is divided equally over $\left(x_{l}, y_{l}\right)$ and $\left(x_{r}, y_{r}\right)$. The force F_{H} represents the spring forces:

$$
F_{\mathrm{H}}=-\left(\cos \left(\alpha_{l}\right) F_{l}, \sin \left(\alpha_{l}\right) F_{l}, \cos \left(\alpha_{r}\right) F_{r}, \sin \left(\alpha_{r}\right) F_{r}\right)^{\mathrm{T}}
$$

[^0]where F_{l} and F_{r} are the forces induced by the left and right spring, respectively, according to Hooke's law:
\[

$$
\begin{aligned}
F_{l} & =\left(L_{l}-L_{0}\right) / \epsilon^{2}, \\
F_{r} & =\left(L_{r}-L_{0}\right) / \epsilon^{2} .
\end{aligned}
$$
\]

Here, L_{l} and L_{r} are the actual lengths of the left and right spring, respectively:

$$
\begin{aligned}
L_{l} & =\sqrt{x_{l}^{2}+y_{l}^{2}} \\
L_{r} & =\sqrt{\left(x_{r}-x_{b}\right)^{2}+\left(y_{r}-y_{b}\right)^{2}} .
\end{aligned}
$$

Furthermore, α_{l} and α_{r} are the angles of the left and right spring with respect to the horizontal axis of the coordinate system:

$$
\begin{aligned}
\alpha_{l} & =\arctan \left(y_{l} / x_{l}\right) \\
\alpha_{r} & =\arctan \left(\left(y_{r}-y_{b}\right) /\left(x_{r}-x_{b}\right)\right)
\end{aligned}
$$

Finally, F_{g} represents the gravitational force

$$
F_{g}=-(0,1,0,1)^{\mathrm{T}} \frac{M}{2} g
$$

The original formulation [Sch94] sets $g=1$.
We rewrite (II.17.6) as a system of first order differential equations by introducing the velocity vector q, so that we obtain the first order differential equations (II.17.1) and

$$
\begin{equation*}
\frac{M}{2} \frac{\mathrm{~d} q}{\mathrm{~d} t}=F_{\mathrm{H}}+G^{\mathrm{T}} \lambda+F_{\mathrm{g}} \tag{II.17.7}
\end{equation*}
$$

Setting $f=F_{\mathrm{H}}+G^{\mathrm{T}} \lambda+F_{g}$, it is easily checked that multiplying (II.17.7) by ε^{2} yields (II.17.2).
To arrive at a consistent set of initial values p_{0}, q_{0} and λ_{0}, we have to solve the system of equations consisting of the constraint

$$
\begin{equation*}
\phi\left(t_{0}, p_{0}\right)=0 \tag{II.17.8}
\end{equation*}
$$

and the 1 up to $k-1$ times differentiated constraint (II.17.8), where k is the highest variable index. To facilitate notation, we introduce $\tilde{p}:=\left(t, p^{\mathrm{T}}\right)^{\mathrm{T}}$ and its derivative $\tilde{q}:=\frac{\mathrm{d} \tilde{p}}{\mathrm{~d} t}=\left(1, q^{\mathrm{T}}\right)^{\mathrm{T}}$. The Jacobian of ϕ with respect to \tilde{p} will be denoted by \tilde{G}. Here, $k=3$, yielding the additional conditions

$$
\begin{equation*}
\tilde{G}\left(\tilde{p}_{0}\right) \tilde{q}_{0}=0 \tag{II.17.9}
\end{equation*}
$$

and

$$
\phi_{\tilde{p} \tilde{p}}\left(\tilde{p}_{0}\right)\left(\tilde{q}_{0}, \tilde{q}_{0}\right)+\tilde{G}\left(\tilde{p}_{0}\right) \tilde{q}_{0}^{\prime}=0
$$

where $\phi_{\tilde{p} \tilde{p}}$ denotes the second derivative of ϕ with respect to \tilde{p}. Using (II.17.6) and the fact that the first component of \tilde{q}_{0}^{\prime} vanishes, the latter condition equals

$$
\begin{equation*}
\phi_{\tilde{p} \tilde{p}}\left(\tilde{p}_{0}\right)\left(\tilde{q}_{0}, \tilde{q}_{0}\right)+\frac{2}{M} G\left(p_{0}\right)\left(F_{\mathrm{H}}\left(p_{0}\right)+G^{\mathrm{T}}\left(p_{0}\right) \lambda_{0}+F_{\mathrm{g}}\left(p_{0}\right)\right)=0 \tag{II.17.10}
\end{equation*}
$$

The equations (II.17.8)-(II.17.10) are solved for

$$
\begin{aligned}
x_{r} & =L \\
x_{l} & =0 \\
y_{r} & =y_{l}=L_{0} \\
x_{r}^{\prime} & =x_{l}^{\prime}=-\frac{L_{0}}{L} \frac{2 \pi}{\tau} h \\
y_{r}^{\prime} & =\frac{L^{2} \tau}{2 \pi h \varepsilon^{2} M}\left(2 \lambda_{1}-\lambda_{2}\right), \\
y_{l}^{\prime} & =\frac{L^{2} \tau}{2 \pi \varepsilon^{2} h M}\left(2 \lambda_{2}-\lambda_{1}\right) \pm \frac{L}{\varepsilon} \sqrt{\frac{-8 \lambda_{2}+2 \lambda_{1}}{M}} .
\end{aligned}
$$

Choosing $\lambda_{1}=\lambda_{2}=0$, we arrive at the initial conditions listed in $\S 17.2$,

Table II.17.1: Reference solution at the end of the integration interval.

y_{1}	$0.493455784275402809122 \cdot 10^{-1}$	y_{6}	$0.744686658723778553466 \cdot 10^{-2}$
y_{2}	0.496989460230171153861	y_{7}	$0.175568157537232222276 \cdot 10^{-1}$
y_{3}	$0.104174252488542151681 \cdot 10$	y_{8}	0.770341043779251976443
y_{4}	0.373911027265361256927	y_{9}	$-0.473688659084893324729 \cdot 10^{-2}$
y_{5}	$-0.770583684040972357970 \cdot 10^{-1}$	y_{10}	$-0.110468033125734368808 \cdot 10^{-2}$

17.4 Numerical solution of the problem

Tables II.17.1-II.17.2 and Figures II.17.2-II.17.3 present the reference solution at the end of the integration interval, the run characteristics, the behavior of some solution components over the integration interval and the work-precision diagrams, respectively. The reference solution was computed on using quadruple precision GAMD on an Alphaserver DS20E, with a 667 MHz EV67 processor. atol $=$ rtol $=h_{0}=10^{-24}$. For the work-precision diagrams, we used: rtol $=10^{-(4+m / 4)}$, $m=0,1, \ldots, 24 ;$ atol $=\mathrm{rtol} ; \mathrm{h} 0=$ rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

References

[MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4. Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008. Available at http://www.dm.uniba.it/~testset.
[Sch94] S. Schneider. Intégration de systèmes d'équations différentielles raides et différentiellesalgébriques par des méthodes de collocations et méthodes générales linéaires. PhD thesis, Université de Genève, 1994.

Table II.17.2: Run characteristics.

solver	rtol	atol	h0	mescd	scd	steps	accept	\#f	\#Jac	\#LU	CPU
BIMD	10^{-4}	10^{-4}	10^{-4}	2.19	0.34	71	71	1693	71	71	0.0088
	10^{-7}	10^{-7}	10^{-7}	5.47	3.34	138	138	4511	138	138	0.0224
	10^{-10}	10^{-10}	10^{-10}	8.01	5.35	235	235	9669	235	235	0.0488
GAMD	10^{-4}	10^{-4}	10^{-4}	1.98	0.39	39	39	2169	39	39	0.0088
	10^{-7}	10^{-7}	10^{-7}	4.82	2.64	98	98	7167	98	98	0.0293
	10^{-10}	10^{-10}	10^{-10}	6.50	3.84	179	179	18771	179	179	0.0742
MEBDFI	10^{-4}	10^{-4}	10^{-4}	0.88	-0.23	280	278	1246	27	27	0.0059
	10^{-7}	10^{-7}	10^{-7}	4.65	3.34	650	648	2797	47	47	0.0137
	10^{-10}	10^{-10}	10^{-10}	4.21	2.08	1393	1391	5624	85	85	0.0264
PSIDE-1	10^{-4}	10^{-4}		0.83	-0.28	55	54	1403	42	220	0.0098
	10^{-7}	10^{-7}		4.41	2.27	179	172	4103	83	464	0.0273
	10^{-10}	10^{-10}		7.25	4.86	625	612	13751	115	964	0.0869
RADAU	10^{-4}	10^{-4}	10^{-4}	1.34	0.19	98	97	850	95	98	0.0039
	10^{-7}	10^{-7}	10^{-7}	3.73	2.51	289	288	2559	282	288	0.0127
	10^{-10}	10^{-10}	10^{-10}	5.99	4.22	179	178	4281	169	179	0.0166

Figure II.17.2: Behavior of $\left(x_{l}, y_{l}\right)$ and $\left(x_{r}, y_{r}\right)$ over the integration interval.

Figure II.17.3: Work-precision diagram (scd versus CPU-time).

Figure II.17.4: Work-precision diagram (scd versus CPU-time).

Figure II.17.5: Work-precision diagram (mescd versus CPU-time).

Figure II.17.6: Work-precision diagram (mescd versus CPU-time).

[^0]: ${ }^{2}$ in the source fortran file the variable r stands for h

