Research Interests

  • Numerical methods for Ordinary Differential Equations (IVP and BVP), linear and nonlinear stability properties, parallel implementation.
  • Saliency and change detection for hyperspectral images.
  • Quasi-interpolation.
  • Stability and conditioning of linear systems.
  • Parallel algorithms for the numerical solution of large linear systems.

Solving Differential Equations in R

SeriesUse R!

Soetaert, Karline, Cash, Jeff, Mazzia, Francesca

2012, 2012, XVI, 248 p. 63 illus., 13 in color.

Click below to see a list, containing our book, of notable computing books and articles of 2012

Many of the test problems in the websites TestSet for IVP Solvers and TestSet for BVP Solvers, the problem descriptions and the theory of solving differential equations are contained in the new book  Solving Differential Equations in R, Springer, 2012, by Karline Soetaert, Jeff Cash and Francesca Mazzia. The user is recommended to consult this reference which can be found at  R is an open-source programming language and software environment for statistical computing and graphics development. The R language is widely used and highly regarded by statisticians who use it to develop statistical software. An aim of this book is to show that R also has some important advantages as an environment when solving differential equations and this indicates that R is perhaps a more powerful language than was first appreciated.