SOLVER - DASSL

2 Solver DASSL

2.1 General information

Author: L. Petzold first version: March 15, 1983 last update: July 11, 2000 language: Fortran 77

availability: the code DASSL is freely available (in the public domain)

official link: http://www.netlib.org/ode/ddassl.f problem type: IDEs/DAEs of index less or equal to 1

IVPtestset files: solver: ddassl.f

driver: dassld.f

auxiliary files: dassla.f (auxiliary linear algebra routines)

2.2 Numerical method

This code implements the Backward Differentiation Formulas of orders one through five to solve an IDE for y and y'. Values for y and y' at the initial time must be given as input. These values must be consistent, (that is, if t_0 , y_0 , y'_0 are the given initial values, they must satisfy $f(t_0, y_0, y'_0) = 0$) [BCP96].

2.3 Implementation details

The subroutine solves the system from t_0 to $t_{\rm out}$ (final integration time). It allows to continue the solution to get results at additional $t_{\rm out}$. This is the interval mode of operation. Intermediate results can also be obtained easily by using the intermediate-output capability. The derivatives are approximated by backward differentiation formulae (BDFs), and the resulting nonlinear system at each time-step is solved by Newton's method. The linear systems are solved using routines from the LINPACK subroutine package. Error handling is accomplished using routines from the SLATEC common mathematical library package. This code is good for stiff ODEs and for DAEs of moderate size, where it is appropriate to treat the Jacobian matrix with dense or banded direct LU decomposition. For large-scale stiff ODE and DAE problems, the user should consider DASPK. For ODE or DAE problems which must stop at the root of a given function of the solution, the user should consider DASKR. The code includes an extensive amount of documentation.

2.4 How to solve test problems with DASSL

Compiling

```
f90 -o dotest dassld.f problem.f ddassl.f dassla.f report.f
```

will yield an executable dotest that solves the problem, of which the Fortran routines in the format described in Section IV.3 are in the file problem.f.

Although DASSL is a code written for problems of index ≤ 1 , it can handle some of the higher index problems by adjusting the error control. If possible, this is done in the driver dassld.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.2.1 shows what one has to do.

I-2-2 SOLVER - DASSL

```
$ f90 -05 -o dotest dassld.f hires.f ddassl.f dassla.f report.f
$ ./dotest
 Test Set for IVP Solvers (release 2.3)
 Solving Problem HIRES using DASSL
User input:
give relative error tolerance:
give absolute error tolerance:
1d-4
Numerical solution:
                                              scd
       solution component
                                                               ignore
                                             abs
                                   mixed
                                                       rel
                                                              mix - abs,rel
                                             ____
                                                       ____
                                         5.18
y(1) = 0.7437259735671353E-003
                               5.18
                                                       2.05
                                            5.89
y(2) = 0.1455514426118115E-003
                                  5.89
                                                       2.04
y(3) = 0.6009984916041035E-004
                                  5.92
                                            5.92
                                                       1.69
y(4) = 0.1188134706173305E-002
                                  4.90
                                            4.90
                                                      1.97
y(5) = 0.2577046600086416E-002
                                  3.72
                                            3.72
                                                       1.10
y(6) = 0.6824947575510993E-002
                                  3.23
                                            3.23
                                                      1.03
y(7) = 0.2989385921555588E-002
                                  3.86
                                            3.86
                                                       1.31
y(8) = 0.2710614078444423E-002
                                  3.86
                                            3.86
                                                       1.31
                                     8
 used components for scd
                                               8
                                                          8
 scd of Y (maximum norm)
                                              3.23
                                    3.23
                                                        1.03
using mixed error yields mescd
                                    3.23
using relative error yields scd
                                                        1.03
Integration characteristics:
   number of integration steps
                                  108
   number of accepted steps
                                   99
   number of f evaluations
                                  173
   number of Jacobian evaluations
                                   31
                                   0.0010 sec
CPU-time used:
```

Figure I.2.1: Example of performing a test run, in which we solve problem HIRES with DASSL. The experiment was done on an ALPHA server DS20E, with a 667MHz EV67 processor. We used the Fortran 90 compiler f90 with the optimization flag -05.

SOLVER - DASSL

References

 $[BCP96] \ \ K.E.\ Brenan, S.L.\ Campbell, and L.R.\ Petzold.\ \textit{Numerical Solution of Initial-Value Problems} \\ in\ \textit{Differential-Algebraic Equations}.\ SIAM,\ second\ edition,\ 1996.$