Capitolo 1

Concetti introduttivi

1.1 Errore

Se A è una quantità che vogliamo calcolare e A_h è un'approssimazione di A, allora l'errore commesso è la differenza fra i due valori:

errore =
$$A - A_h$$
;

l'errore assoluto è il valore assoluto dell'errore:

errore assoluto =
$$|A - A_h|$$
;

e l'errore relativo si ottiene normalizzando l'errore assoluto con il valore esatto, se $A \neq 0$:

errore relativo =
$$\frac{|A - A_h|}{|A|}$$
.

L'errore relativo è più significativo dell'errore assoluto. È ragionevole chiedere che l'errore relativo sia minore di un valore prefissato.

Se conosciamo una maggiorazione dell'errore assoluto, cioè:

$$|A - A_h| < tol.$$

possiamo fare una stima del valore esatto:

$$A_h - tol \le A \le A_h + tol.$$

Se conosciamo una maggiorazione dell'errore relativo, cioè:

$$\frac{|A - A_h|}{|A|} < tol.$$

possiamo fare una stima del valore esatto:

$$\frac{A_h}{1+tol} \le A \le \frac{A_h}{1-tol}.$$

Se riteniamo accettabili approssimazioni in cui

$$\frac{|A - A_h|}{|A|} < 0.001,$$

allora se A=123457 e $A_h=123500,$ ci calcoliamo l'errore relativo:

$$\frac{43}{123457} = 0.00034,$$

e poichè l'errore è minore di 0.001, l'approssimazione e accettabile. Se invece A = 341.5 e $A_h = 300$, l'errore relativo è:

$$\frac{41.5}{341.5} = 0.121,$$

e quindi l'approssimazione non è accettabile.

1.2 Notazione: uguaglianza approssimata

Se due quantità sono approssimativamente uguali, useremo la notazione \approx per indicare questa relazione.

Questa è una notazione ambigua. È vero che $0.99 \approx 1$? Forse si. È vero che $0.8 \approx 1$? Forse no. Sia h un parametro reale che tende a zero tale che $\lim_{h\to 0} A_h = A$ allora,

$$A_h \approx A$$

per ogni h "sufficientemente piccolo". Sia n un parametro intero che tende all'infinito tale che $\lim_{n\to\infty}A_n=A$ allora,

$$A_n \approx A$$

per ogni n "sufficientemente grande".

Esempio 1.2.1 Un modo per scrivere la derivata prima di una funzione è

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Possiamo quindi concludere che per h sufficientemente piccolo

$$\frac{f(x+h) - f(x)}{h} \approx f'(x)$$

L'uguaglianza approssimata verifica le proprietà transitiva, simmetrica e riflessiva:

$$A \approx B, B \approx C \rightarrow A \approx C$$

 $A \approx B \rightarrow B \approx A$
 $A \approx A$

1.3 Notazione: ordine asintotico

Un'altra notazione è la notazione dell''O grande', conosciuta come ordine asintotico. Supponiamo di avere un valore y e una famiglia di valori che lo approssimano y_h , Se esiste una costante C > 0, indipendente da h, tale che:

$$|y - y_h| \le C|\beta(h)|,$$

per h sufficientemente piccolo, allora diciamo che:

$$y = y_h + O(\beta(h))$$
 per $h \to 0$,

cioè $y-y_h$ è dell'ordine di $\beta(h)$, $\beta(h)$ è una funzione del parametro h tale che $\lim_{h\to 0}\beta_h=0$. Ci concentriamo sul modo in cui l'errore dipende dal parametro h e ignoriamo dettagli meno importanti come il valore di C. L'utilizzo è analogo se abbiamo una successione x_n che approssima x per valori di n grandi:

$$|x - x_n| \le C|\beta(n)|, \qquad x = x_n + O(\beta(h))$$

1.4 Teorema di Taylor

Teorema 1.4.1 Sia f(x) una funzione avente n+1 derivate continue su [a,b] per qualche $n \geq 0$, e siano $x,x_0 \in [a,b]$. Allora

$$f(x) = p_n(x) + R_n(x)$$

con

$$p_n(x) = \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0)$$

4

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt.$$

Inoltre esiste un punto ξ_x tra x e x_0 tale che:

$$R_n(x) = \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi_x)$$

Esempio 1.4.1 Supponiamo di volere approssimare la derivata prima di una funzione. Sappiamo che:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h} = f'_h(x_0)$$

per h sufficiantemente piccolo. Vogliamo calcolare come $f'_h(x_0)$ si avvicina a $f'(x_0)$. Usiamo il Teorema di Taylor, con $n=2, x=x_0+h$ per esprimere $f(x_0+h)$:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(\xi_h)$$

quindi

$$f'_h(x_0) = \frac{f(x_0+h)-f(x_0)}{h}$$

$$= \frac{f(x_0)+hf'(x_0)+\frac{h^2}{2}f''(\xi_h)-f(x_0)}{h}$$

$$= f'(x_0)+h/2f''(\xi_h)$$

$$= f'(x_0)+O(h).$$

e